
Theory Guide
Fedem 8.0

ii Fedem 8.0 Theory Guide

Table of Contents

1 Introduction 1

1.1 History . 1

1.2 System Simulation Methods . 2

1.3 Terminology and Definitions . 2

2 Fundamentals 1

2.1 Notation . 1

2.2 Rigid-body motion . 1

2.3 Finite rotations . 3

2.3.1 Spin of a matrix . 3

2.3.2 Rotation of a vector . 3

2.3.3 Rodriguez parameterization 4

2.3.4 Variation of Rodriguez parameterization 4

2.3.5 Euler angles parameterization 4

2.3.6 Euler angles extraction . 6

3 Model Reduction 1

3.1 Review of model reduction methods 2

3.1.1 Modal reduction . 4

3.1.2 Static condensing (Guyan reduction) 5

3.1.3 Dynamic condensing . 7

3.1.4 Dynamic substructuring 7

3.1.5 Summary . 9

3.2 Component mode synthesis reduction 10

3.2.1 Static modes . 10

3.2.2 Constrained dynamic modes 11

3.2.3 Reduced system . 11

Fedem 8.0 Theory Guide TABLE OF CONTENTS iii

4 Co-rotated Formulation 1
4.1 Local element coordinate system 2

4.1.1 Method 1: Best fit of max sized triangle 2
4.1.2 Method 2: Mass based weighted average 4

5 Flexible Connections 1
5.1 Spring elements . 1

5.1.1 Failure and yield properties 2
5.1.2 Interconnected spring elements 4
5.1.3 Global spring elements . 5

5.2 Damper elements . 6
5.3 Spring-constrained joints . 8

6 Modeling of Joints 1
6.1 Master and Slave based Joint Modeling 1
6.2 Single-master Joints . 1

6.2.1 Revolute Joint . 3
6.2.2 Universal Joint . 4
6.2.3 Constant Velocity Joint 4
6.2.4 Ball Joint . 5
6.2.5 Rigid Joint . 5
6.2.6 Free Joint . 6
6.2.7 Axial Joint . 7

6.3 Multi-master Joints . 7
6.3.1 Prismatic Joint . 8
6.3.2 Cylindric Joint . 9
6.3.3 Cam Joint . 9
6.3.4 Spring-based cam joint formulation 10

6.4 Master and Slave based Transmissions 12
6.4.1 Gear Joint . 13
6.4.2 Rack and Pinion . 13
6.4.3 Screw Joint . 13

6.5 Joint Friction . 13
6.5.1 Viscous friction . 14
6.5.2 Coulomb friction . 14
6.5.3 Modified Stribeck friction 15
6.5.4 Total friction . 17
6.5.5 Equivalent load in revolute joint 17
6.5.6 Equivalent load in ball and free joints 18
6.5.7 Equivalent load in prismatic joint 19
6.5.8 Equivalent load in cam joint 20

iv TABLE OF CONTENTS Fedem 8.0 Theory Guide

7 Dynamics Simulation 1

7.1 Dynamics equation on incremental form 1

7.2 Newmark time integration . 3

7.2.1 Stability and accuracy . 4

7.3 Newton–Raphson iteration . 5

7.3.1 Convergence criteria . 7

7.4 Newmark integration with numerical damping 9

7.4.1 The Hilber–Hughes–Taylor method 9

7.4.2 Numerical characteristics of the HHT-α method 12

7.4.3 The generalized-α method 12

7.5 Structural damping . 16

7.6 Evaluation of the Newton matrix 18

7.7 Evaluation of the force vector . 19

7.7.1 External forces . 19

7.7.2 Stiffness forces . 20

7.7.3 Inertia and damping forces 20

7.7.4 Forces due to prescribed motion 21

7.8 Quasi-static equilibrium . 23

7.8.1 Equilibrium iteration procedure 24

7.9 Frequency Response Analysis . 25

7.9.1 Direct frequency response analysis 25

7.9.2 Modal frequency response analysis 26

7.9.3 Modal vs. direct frequency response 27

7.9.4 Sampling and windowing 28

7.9.5 Fast fourier transformation (FFT) 31

7.9.6 Modal damping . 34

8 Control System 1

8.1 Problem statement . 1

8.2 Control variables . 2

8.3 Control system tasks . 3

8.3.1 Initialization . 3

8.3.2 Steady state . 4

8.3.3 Time integration . 4

8.4 Control element library . 6

8.4.1 Basic Elements . 7

8.4.2 Time dependent elements 9

8.4.3 Piecewise Continuous Elements 10

8.4.4 Compensator Elements 11

8.4.5 General Transfer Functions 13

Fedem 8.0 Theory Guide TABLE OF CONTENTS v

9 Simulation Results 1
9.1 Fatigue analysis . 1

9.1.1 Peak valley extraction . 1
9.1.2 Rainflow analysis . 2
9.1.3 Damage and life calculation 3

9.2 Energy calculations . 5
9.2.1 Strain energy . 5
9.2.2 Kinetic energy . 6
9.2.3 Potential energy . 7
9.2.4 Input energy . 7
9.2.5 Energy loss . 8
9.2.6 External energy . 9
9.2.7 Energy check-sum . 9

A Finite Element Library 1
A.1 FFT3 . 2
A.2 FFQ4 . 3
A.3 TET4 . 4
A.4 TET10 . 4
A.5 WEDG6 . 4
A.6 WEDG15 . 4
A.7 HEX8 . 7
A.8 HEX20 . 7
A.9 BEAM2 . 7

A.9.1 Spot weld element . 9
A.10 BUSH . 10
A.11 SPRING and RSPRING . 11
A.12 CMASS . 12
A.13 RBAR . 13
A.14 RGD . 14
A.15 WAVGM . 15
A.16 Generic part element . 18

vi TABLE OF CONTENTS Fedem 8.0 Theory Guide

List of Figures

3.1 Individual modal response . 4

4.1 Coordinate systems and configurations for an element 1

6.1 Coordinate axis and variable of revolute joint. 3
6.2 Coordinate system i and j of a ball joint 5
6.3 Coordinate axis of rigid joint. 6
6.4 Coordinate system i and j for a free joint. 7
6.5 Prismatic joint with slave and master nodes. 8
6.6 Cam curve composed of a circle arc, a straight line, a circle arc

and another circle arc. The first and last arcs consist of two
curve segments (5 nodes). The straight line and the second arc
consist of one curve segment each. 10

6.7 The geometry of the spring-based cam joint. 11
6.8 Coulomb friction . 14
6.9 Friction caused by prestressed components 15
6.10 Modified Stribeck friction including hysteresis 16
6.11 Revolute joint . 17
6.12 Prismatic joint . 19

7.1 Numerical damping ratio for HHT and Newmark algorithm. . . . 13
7.2 Relative periodicity error for HHT and Newmark algorithm. . . . 13
7.3 Classification of the generalized-α method in the αm−αf space.

From [14]. 14
7.4 A typical relationship between damping and natural frequency

arising from the specification of damping ratio at the frequencies.
(α1 = 1.5 and α2 = 0.004). 17

7.5 The Hanning window. 29
7.6 Sample input data. 30
7.7 Three Hanning windows with 50% overlap. 30

Fedem 8.0 Theory Guide LIST OF FIGURES vii

7.8 Tapered windows. 31
7.9 Tapered system response . 32

8.1 The general control module . 3
8.2 Configuration example . 3

9.1 Peak valley extraction of a stress history curve. a) The original
stress curve. b) The processed curve consisting of the turning
points (+) only. 2

9.2 Rainflow analysis: Points defining full stress cycles detected dur-
ing the first traversal of the curve in Figure 9.1b). 3

9.3 Subsequent steps of the rainflow analysis: a) Inserting an ad-
ditional max point making it the new start and end point. b)
Removing two ‘non-turning’ points and the next full stress cycle.
c) Removing another full cycle in the next traversal. d) Counting
the final cycle. 4

A.1 FFT3, Flat triangular shell element 2
A.2 FFQ4, Flat quadrilateral shell element 3
A.3 TET4, Constant strain tetrahedron element 5
A.4 TET10, Isoparametric tetrahedron element 5
A.5 WEDG6, Isoparametric triangular prismatic element 6
A.6 WEDG15, Isoparametric prismatic element 6
A.7 HEX8, Isoparametric hexahedron element 8
A.8 HEX20, Isoparametric hexahedron element 8
A.9 BEAM2, Beam element . 9
A.10 BUSH, Generalized spring element 10
A.11 RBAR, Rigid bar element . 14
A.12 RGD, Multi-node rigid element 15
A.13 WAVGM, Multi-node weighted averaged motion element 16

viii LIST OF FIGURES Fedem 8.0 Theory Guide

List of Tables

2.1 Euler Angle Parameterizations 6

7.1 Modal vs. Direct Frequency Response 27

8.1 Butcher tableau . 5
8.2 Backward Euler and Lobatto IIIC 5

A.1 Fedem element library. 1

Fedem 8.0 Theory Guide LIST OF TABLES ix

x LIST OF TABLES Fedem 8.0 Theory Guide

1

Chapter 1 Introduction

Fedem, an abbreviation for Finite Element Dynamics in Elastic Mechanisms,
is a code for effective modeling, simulation and visualization of finite element
assemblies and control systems. The code is based on a non-linear finite
element formulation, which predicts the dynamic response of elastic
mechanisms experiencing non-linear effects such as large rigid-body rotations.
The elastic and rigid-body motions of a mechanism are solved together with
control systems. Fedem represents in this respect Multidisciplinary Mechanical
Analysis.

This theory guide is intended to provide users and others with insight into
the mathematical and physical basis of the numerical simulation code.

1.1 History

The theory behind Fedem was originally developed by professor Ole Ivar
Sivertsen in the late 1970s and through the 1920s. His work initiated new
Ph.D. studies and international R&D projects that contributed to the
development of the first FEDEM software product.

On the basis of Professor Sivertsen’s work, a company was established in
1992 by Sintef, Northern Europe’s largest R&D institute based in Trondheim.
Computer speed reached levels that would allow the theories to produce
results, and visualization technology made it possible to create a user
interface. During this period the Fedem software was strictly an inhouse code
at Sintef.

In 1995 the company Fedem, which later became Fedem Technology,
continued the development of the user interface and made it possible to offer
Fedem as a commercial product in 1998.

The Fedem software was continously developed as a product by Fedem
Technology during the 2000s and 2010s while it was also used as an internal
tool in various consultancy projects, until the company was aquired by SAP
SE in 2016. Since then, the Fedem solvers have been provided as components
in the EPD Connected Products by SAP, until the sunsetting of the
Connected Products in 2023. It was then decided to release Fedem under a
open source license on github, as a service to the existing user community.

Fedem 8.0 Theory Guide Introduction 1-1

1.2 System Simulation Methods

One method of System Simulation is the so-called Multi Body System
Simulation, with which the real physical behavior of the product under
investigation can be reduced to a few - for instance overall behavior relevant -
characteristics and then can be simulated as a numerical model on the
computer. Each body is usually treated as completely rigid.

The Finite Element Method is used for instance for a vehicle to calculate
fatigue, stiffness, dynamical behavior of the car body, of chassis components,
of engines. The size and the shape of the Finite Elements are chosen
according to the required accuracy of the results. For many years the Finite
Element Method has been a successful tool for product analysis with respect
to functionality and safety.

New simulation tools are now commercially available, the so-called Multi
Discipline Simulation tools, which combine Multi Body System Simulation,
the Finite Element Method and Control Engineering. These computer
programs make a much more detailed modeling possible and correspondingly
yield much more accurate Multi Body System Simulation results.

1.3 Terminology and Definitions

Most of the terms and names used within Fedem is quite standard within
Finite Element technology and dynamic simulation. However, over the years
certain terms have evolved among users and developers of the software, to a
point where the terminology has become an integral part of the software
product.

DOF Degree of Freedom. For the mechanism models of Fedem, a DOF is
usually a translational or rotational degree of freedom. Regarding a
control system a DOF is defined more broadly as simply an unknown of
the equation system to be solved.

Triad Numerically a triad is simply a node with displacement DOFs. The
term has been coined within the modeling frame to better to describe
the modeling entity that eventually results in a node in the
computational model. Because of its frequent use within the modeling
vocabulary it has also come to be used synonymously with nodes within
the numerical/theoretical vocabulary of Fedem.

Link Regarding numerical algorithms a link is a superelement. The element
is linear within its corotated coordinate system. This term also has its

1-2 Introduction Fedem 8.0 Theory Guide

1

background from the modeling side of Fedem and has since become a
part of the theoretical vocabulary.

Model A model is defined as a more or less simplified representation of a
system. The model must represent the properties of a system being
studied, as accurate as possible.

Simulation Imitation of certain properties of a (mechanical) system in a
computational model.

Kinematic simulation Kinematic simulation refers to calculations of
motion in a system with no reference to forces and torques necessary to
achieve this motion.

Dynamic simulation Dynamic simulation refers to the calculations of
motion in a system where both constraint forces and forces necessary to
drive the system are taken into account.

Multi discipline dynamic simulation The multi discipline dynamic
simulation concept refers to a simulation model where the overall system
is modeled as a mechanism, the parts are modeled as Finite Element
substructures, and combined with a possible control system, all is
integrated in the same simulation model. A control system may include
controllers, actuators and sensors (to model feedback loops).

System simulation The term system simulation incorporates the three
terms kinematic simulation, dynamic simulation and multi discipline
dynamic simulation described above.

Fedem 8.0 Theory Guide Introduction 1-3

1-4 Introduction Fedem 8.0 Theory Guide

2

Chapter 2 Fundamentals

2.1 Notation

Matrices and matrix vectors (one column matrices), are denoted in text as
upright bold symbols, such as K and v. Tensors are denoted in italicized bold
symbols, such as a = aiii.

Given two coordinate systems with the three orthonormal base vectors
(I1I2I3) and (i1i2i3), system Ii is called the global system, whereas system ii
is called the local system.

Using tensor notation, a vector (first order tensor) a can be represented as

a = a1I1 + a2I2 + a3I3 =

3∑
i=1

aiIi = aiIi

= ã1i1 + ã2i2 + ã3i3 =

3∑
i=1

ãiii = ãiii

(2.1)

with respect to the two coordinate systems.

Using matrix notation, this same vector will be represented as a and ã in
the global and local coordinate systems respectively:

a =

 a1

a2

a3

 and ã =

 ã1

ã2

ã3

 (2.2)

2.2 Rigid-body motion

The position and orientation in space of a rigid body, S, can be represented
by the position and orientation of a fixed coordinate system. This rigid body
can be a link or a superelement. This section addresses the rigid-body motion
of the superelement.

The vector s represents the position of the fixed coordinate system in
relation to the global coordinate system. The fixed coordinate system is
defined by the three orthonormal base vectors (i1, i2, i3), which comprise the

Fedem 8.0 Theory Guide Fundamentals 2-1

rotation matrix:

Position: s =

 sx
sy
sz

 (2.3)

Orientation: RS =
[

i1 i2 i3
]

=

 i1x i2x i3x
i1y i2y i3y
i1z i2z i3z

 (2.4)

It is frequently necessary to describe the motion within the rigid body S
in, for example, joint attachment points. Such points have a position relative
to the rigid body coordinate system. The joint itself has an orientation
relative to the rigid body’s orientation. Defining the point N (a FE node, for
example) within the rigid body with coordinates ã relative to the body’s fixed
coordinate system, a local coordinate system, R̃N , relative to the body-fixed
system is represented by

Position: ã =

 ãx
ãy
ãz

 (2.5)

Orientation: R̃N =
[

ĩ1 ĩ2 ĩ3
]

=

 ĩ1x ĩ2x ĩ3x
ĩ1y ĩ2y ĩ3y
ĩ1z ĩ2z ĩ3z

 (2.6)

The point N has a motion in the global system produced as a result of the
motion of the body-fixed coordinate system. With a being the coordinates of
the point relative to the global system, we have

a = RS ã + s (2.7)

The orientation of the point in the local coordinate system, R̃N , will then be
as follows in the global system:

RN = RSR̃N (2.8)

The above equations can be combined by using 4× 4 transformation
matrices containing the position and rotation as defined by equations (2.3)
and (2.4)

PS =

[
RS s
0 1

]
=


i1x i2x i3x sx
i1y i2y i3y sy
i1z i2z i3z sz
0 0 0 1

 (2.9)

2-2 Fundamentals Fedem 8.0 Theory Guide

2

and

P̃N =

[
R̃N ã
0 1

]
=


ĩ1x ĩ2x ĩ3x ãx
ĩ1y ĩ2y ĩ3y ãy
ĩ1z ĩ2z ĩ3z ãz
0 0 0 1

 (2.10)

The position and orientation of point N in the global system can then be
expressed as

PN = PSP̃N =

[
RN a
0 1

]
(2.11)

Remark: In computer implementations, the 4 × 4 transformation matrices are
represented as 3 × 4 matrices obtained by deleting the fourth of the 4 × 4 matrix
as in. The matrix multiplication of equation (2.11) is then modified by taking into
account the implicitly defined [0 0 0 1] fourth row of the matrix.

2.3 Finite rotations

2.3.1 Spin of a matrix

The cross product of vectors is written as

c = a× b (2.12)

when using tensor notation. Using matrix notation this can be written

c = â b (2.13)

where

â =

 0 az −ay
−az 0 ax
ay −ax 0

 when a =

 ax
ay
az

 (2.14)

The above equations define the Spin of a vector. This notation is frequently
used in the matrix expressions in the following.

2.3.2 Rotation of a vector

Any rotation of a vector from its original direction a to its rotated direction a′

can be described by the general relationship

a′ = Ra (2.15)

Fedem 8.0 Theory Guide Fundamentals 2-3

where R is a orthonormal 3× 3 matrix. A matrix is orthonormal when each
row and column represented as a vector is orthogonal to all the other rows
and columns of the matrix, and has a unit length. Since R is orthonormal, the
inverse relationship becomes

a = R−1a′ = RTa′ (2.16)

A rotation matrix R can be established in a number of ways, referred to as
different parameterizations of the rotation. The rotation matrix is also often
called rotation tensor, as it has properties of a second order tensor.

2.3.3 Rodriguez parameterization

Rodriguez parameterization states that any combination of rotations can be
represented by a single rotation θ about a single rotational axis defined by a
unit vector n. The vector is defined as

θ = θn (2.17)

and the rotation matrix can be written as

R = R(θ) = I +
sin θ

θ
θ̂ +

1

2

(
sin θ

2
θ
2

)2

θ̂
2

(2.18)

2.3.4 Variation of Rodriguez parameterization

The variation of the instantaneous rotation axis ω with respect to the finite
rotations θ of the Rodriguez parameterization can be written as

δω =
∂ω

∂θ
δθ = H(θ)δθ (2.19)

where

H(θ) =
1

θ2
θθT +

sin θ

θ

(
I− 1

θ2
θθT

)
+

1− cos θ

θ2
θ̂ (2.20)

Remark: Attention should be paid to the 0/0 terms of equation (2.20) when cal-
culating H(θ) for very small values of θ.

2.3.5 Euler angles parameterization

The Euler angle parameterization actually refers to several parameterizations
of a finite rotation. The total rotation is defined by a series of rotations about
subsequent follower axes. To establish the relationship for the follower axes we
first establish a relationship for subsequent rotations about rigid (global) axes.

2-4 Fundamentals Fedem 8.0 Theory Guide

2

Sequential rotations about rigid axes

A vector a0 is first rotated an angle θx about the global X-axis to obtain
vector a1. The vector a1 is then rotated an angle θy about the global Y -axis
to obtain vector a2. Finally, the vector a2 is rotated an angle θz about the
global Z-axis to obtain vector a3. This yields the equations:

a1 = Rxa0 (2.21)

a2 = Rya1 = RyRxa0 = RRxya0 (2.22)

a3 = Rza2 = RzRyRxa0 = RRxyza0 (2.23)

where Rx, Ry, and Rz are established from equation (2.18) by inserting

θT = [θx 0 0], θT = [0 θy 0] and θT = [0 0 θx], respectively.

Sequential rotations about follower axes

When rotating a vector a0 with rotation matrix Rx, a new coordinate system
consisting of the global axes rotated with matrix Rx, can be obtained.

Remark: The columns of Rx form the basis vectors of the new coordinate system.

As vector a0 rotates with the coordinate system to form vector a1, the vector
has not changed in the co-rotated coordinate system:

ã1 = a0 (2.24)

where superimposed˜is used to designate a vector in the local (co-rotated)
coordinate system of Rx.

A second rotation of the vector a1, an angle θy about the new local y-axis,
is established in the co-rotated coordinate system

ã2 = Ryã1 = Rya0 (2.25)

where matrix Ry is identical to the matrix established in equation (2.22).
Transforming the vector ã2 back to the global coordinate system can be
achieved by the relationship

a2 = Rxã2 = RxRya0 = RFxya0 (2.26)

A third rotation about the new z-axis of the second updated coordinate
system is established in the local coordinate system

˜̃a3 = Rz
˜̃a2 = Rza0 since ˜̃a2 = ã1 = a0 (2.27)

Fedem 8.0 Theory Guide Fundamentals 2-5

where superimposed˜̃is used to designate a vector in the local (co-rotated)
coordinate system of RFxy.

Transforming ˜̃a3 back to the global coordinate system is performed in
steps that reverse the intermediate local coordinate systems

ã3 = Ry
˜̃a3 = RyRza0 (2.28)

a3 = Rxã3 = RxRyRza0 = RFxyza0 (2.29)

Comparing equations (2.23) and (2.29), the sequential rotations about
follower axes are obtained by reversing the order of the matrix multiplication
in relation to rigid axis rotation and forming the resultant rotation matrix:

Rigid (fixed) axis X-Y -Z rotation: RRxyz = RzRyRx (2.30)

Follower axis X-Y -Z rotation: RFxyz = RxRyRz (2.31)

Euler angles

To define a number of Euler angle parameterizations, the axis and the
sequence in which to perform the rotations are determined. The most
common parameterizations use all axes in the sequences X-Y -Z, Y -Z-X, and
Z-X-Y , and their reverse-sequenced alternatives. Two axis combinations such
as X-Y -X are also possible. These parameterizations are easily established by
substitutions into the expression (2.31).

This gives the 12 different parameterizations of Table 2.1. The Euler angle
parameterization used in Fedem is Z-Y -X.

2.3.6 Euler angles extraction

Section 2.3.5 describes how to obtain an incremental rotation matrix, R, given
three Euler angles θx, θy and θz. In some cases we would also like to perform

Table 2.1: Euler Angle Parameterizations

Three axis combinations: X-Y -Z, Y -Z-X, Z-X-Y ,
Z-Y -X, X-Z-Y , Y -X-Z

Two axis combinations: X-Y -X, Y -X-Y ,
Y -Z-Y , Z-Y -Z,
Z-X-Z, X-Z-X

2-6 Fundamentals Fedem 8.0 Theory Guide

2

the inverse transformation, that is, given an (incremental) rotation matrix,
find the corresponding Euler angles.

Assuming we use the Euler Z-Y -X parameterization, we start by creating
the rotation matrix that rotates a vector an angle θz = α about the Z-axis:

Rz =

 cosα − sinα 0
sinα cosα 0

0 0 1

 (2.32)

Next, create the rotation matrix to rotate a vector an angle θy = β about the
Y -axis:

Ry =

 cosβ 0 sinα
0 1 0

− sinβ 0 cosβ

 (2.33)

Then, create the rotation matrix rotating a vector an angle θx = γ about the
X-axis:

Rx =

 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 (2.34)

Multiplying these matrices together we get the single rotation matrix:

R = RzRyRx =[
cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ
sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ
− sinβ cosβ sin γ cosβ cos γ

]
(2.35)

Letting rij denote the individual elements of this matrix, we can now derive
the Euler angles as follows:

θz = α = arctan
r21

r11
(2.36)

θy = β = arctan
−r31√
r2
11 + r2

21

(2.37)

θx = γ = arctan
r32

r33
(2.38)

Remark: In a computer implementation of the above equations, one should use the
intrinsic math function atan2(y,x) when evaluating arctan y

x
, such that the sign of

the computed angles are correctly set according to which quadrant the arguments x
and y implies.

Fedem 8.0 Theory Guide Fundamentals 2-7

2-8 Fundamentals Fedem 8.0 Theory Guide

3

Chapter 3 Model Reduction

Dynamic analysis is generally more expensive than static analysis, because the
solution involves repeated computations of the same form, whereas static
analysis requires only a single computation. The introduction of Component
Mode Synthesis (CMS) model reduction and superelement techniques,
however, reduces the cost of dynamic computations.

The CMS reduction technique reduces the cost of the analysis by
decreasing the number DOFs used. The fundamental assumption is that the
low-frequency modes of vibration are the most important; in other words, the
higher the frequency mode, the less significant it is in the dynamic analysis. It
is also true that for any numerical model, and especially an FE model, the
high-frequency modes are less accurate in comparison to underlying
differential equation solutions.

The form of applied loads is important when deciding upon the required
complexity of the FE models. If a harmonic load is applied and the
steady-state response is required, a peak response is achieved if the load has a
frequency component close to a resonant frequency. In this case, the accuracy
of the FE model must be sufficient to represent the resonant frequencies over
the entire range of the load’s frequencies so that no significant resonant
frequencies are missed.

If the loads are not periodic −as is the case, for example, in deployment
and latching simulations−then there is no simple relationship between the
structural resonant frequencies and the frequency content of the loads.
However, there is an effective frequency within the loads defined by the rate of
change from one state to another, that is, the rise time of the input. If the
force changes rapidly, it has a short rise time and the input has a
high-frequency content. This requires a relatively large number of DOFs in
the model. If the force input changes relatively slowly (it has a long rise
time), it will have a lower frequency content, and fewer modes are therefore
required in the analysis.

The number of nodes in a mesh basically controls the number of DOFs in
the model. When a dynamic model is constructed, the mesh used can reflect
the results. For instance, if only the displacement or the first few resonant
frequencies are required, a coarse mesh can be used. This mesh can be much
coarser than the mesh used in an equivalent static stress analysis. If, however,
dynamic stresses are required, a finer mesh density of the kind used for static

Fedem 8.0 Theory Guide Model Reduction 3-1

stressing is necessary. In this case, the mesh can be graduated in regions of
stress concentration in exactly the same manner as in static stress analysis.

The most expensive dynamic computation is performed for impact and
wave propagation models. Here, the short rise times of the forcing function
require a relatively large number of DOFs. In addition, the large stress and
displacement changes at the front of the wave need a fine mesh to model the
wave front accurately. However, the wave front moves through the complete
model as the wave propagates, so a uniformly fine mesh is necessary
throughout the model to accurately address wave propagation problems.

There are various methods of condensing static models into smaller
dynamic models automatically, but for the various reasons outlined above,
these methods must be used with care because they are only applicable in
certain cases, depending upon the required response. In some cases, typically
when calculating dynamic stresses, the degree to which a model can be
condensed depends partly upon the reduction process used, and the method of
recovering stresses after the displacements have been determined. These two
factors must be considered together when determining the degree of
condensation to be employed within the analysis.

3.1 Review of model reduction methods

All reduction methods are based on the same principle: to reduce the effective
number of DOFs in order to reduce computational costs. However, because
these methods are approximate and different approximations can be used, the
range of dynamic reduction methods is extensive. In addition, each of these
methods has sub-variants.

Most of the dynamic model reduction techniques available can be classified
into one of the following four categories:

� Modal Reduction −only a small number of the possible modes of
vibration−typically those with lowest eigenfrequency−are used in the
dynamic analysis.

� Static Condensing (Guyan reduction) −this method of reducing the
effective number of DOFs is based entirely upon static considerations.
Fedem uses this classic FE reduction technique when no additional
component modes are specified. In static reduction, the nodes (and
corresponding DOFs) are split into master/external and slave/internal
nodes. Only master/external nodes are retained after the static
reduction.

3-2 Model Reduction Fedem 8.0 Theory Guide

3

� Dynamic Condensing −the method of reducing the effective number of
DOFs is based upon both static and dynamic considerations. The CMS
reduction implemented in Fedem is one example of dynamic condensing.

� Dynamic Substructuring −the complete structure is formed by
establishing a reduced set of equations for a set of components, or
substructures, that comprises the total structure or mechanism. One of
the techniques above is used for each substructure.

All reduction (or condensing) methods can be written in terms of a
coordinate transformation of the form

v = H q (3.1)

where v is the full set of displacements of size n, q is the reduced or
condensed set of displacements of size m where m < n, and H is a
transformation matrix relating the two sets of coordinates. The various
reduction techniques can then be viewed as different methods for constructing
a suitable transformation matrix.

There are many ways to define the transformation matrix H, but they are
not all equally accurate for dynamic analysis. Various factors must be
considered, and most methods of condensing the equations result in a
compromise in the requirements. The first and most important considerations
are that dynamic behavior is largely controlled by the lowest static and
component vibration modes, and that any condensation method should allow
the lower modes to be recovered with a smaller error than the higher ones.

Secondly, the higher vibration modes still contribute to the dynamic
response. However, if the maximum frequency content of the acting loads is
significantly lower than a particular resonant frequency, the contribution of
that high resonance to the overall response will be in terms of a constant
(static) value. This is illustrated in Figure 3.1. Mode 2 here has a
substantially constant response up to the frequency ω, and its contribution to
the overall response is defined almost entirely by its stiffness over this range.
This is not the case for mode 1, which requires dynamic behavior because it
varies considerably over the frequency range 0 to ω. If a frequency of 2ω or
higher is necessary, mode 2 must also be modeled dynamically.

In general, the transformation matrix, H, must be constructed in such a
way that the high-frequency modes can be defined by their static response.
Once the transformation has been defined, the equation of motion can be
condensed from the full set of n equations to the smaller set, m, by means of
the transformation matrix H.

Fedem 8.0 Theory Guide Model Reduction 3-3

-

6

Response

Frequency

ω

Mode 1

Mode 2

Figure 3.1: Individual modal response

In static analysis, a solution achieved by means of substructuring is exact.
If the full structure is analyzed directly and then as a series of substructures,
it is found that apart from round-off error the two solutions are identical.
There is no approximation involved in static substructuring.

This is not the case with dynamic analysis. When the equations of any
individual substructure are reduced in size, information regarding the
dynamic response −that is, information regarding the higher resonant
frequencies and mode shapes−is lost. The solution can be organized to
preserve the stiffness but not the mass characteristics associated with the
high-frequency modes. Thus, a static substructure solution is exact, but a
dynamic substructure solution is only approximate.

3.1.1 Modal reduction

In general, modal reduction is only carried out when the set of modes used in
dynamic analysis is reduced. In this case, each column in the transformation
matrix, H, is an eigenvector of the system. The transformation to the reduced
set of equations has the added computational advantage that the reduced
stiffness and mass matrices are both diagonal. For the assumption of either
proportional damping or modal damping, the reduced damping matrix is also
diagonal. This is used to solve the forced response of the equations, as the
reduced equations are a set of m uncoupled single-DOF equations.
Proportional damping is described in Section 7.5.

3-4 Model Reduction Fedem 8.0 Theory Guide

3

In modal reduction, the contribution of all the modes included in the
transformation is exact. The response, however, is not exact, even for a
low-frequency input, because the static contributions of the high-frequency
modes have not been included. This is not important if the excitation is near
one of the low resonance frequencies, because the response of this mode will
then dominate. However, at a distance from a resonance it can lead to
significant error.

3.1.2 Static condensing (Guyan reduction)

A common form of dynamic reduction is static condensing or Guyan
reduction. In this form of reduction, the stiffness properties of the structure
are preserved at the expense of its dynamic properties. The nodes (and
corresponding DOFs) are split into master/external and slave/internal nodes;
only master DOFs are retained after reduction. This form of reduction is
widely used, being simple and relatively inexpensive to carry out; however, it
should be used with some caution.

For static condensing, a set of master/external DOFs are defined that
become the q displacements in the transformation equations. The remaining
displacements are called the slave/internal DOFs (and nodes), and these are
eventually eliminated from the solution process. There are many more slave
than master DOFs. The transformation matrix, H, is constructed by applying
a unit displacement to each master DOF in turn, while setting all the other
master DOFs to zero. The resulting slave displacements are used to define a
column in H. This is repeated for each master in turn to construct the
complete transformation matrix.

In Fedem, the master DOFs are defined implicitly by the selection of nodes
for use as connection points between component FE models; these points are
called Triads.

This process of constructing the transformation matrix preserves rigid
body inertias and the static behavior of the structure. However, it only
approximates the dynamic behavior, since the process implicitly assumes that
inertia forces on the slave freedoms are zero. This has the effect of
redistributing the mass of slave freedoms onto the masters (Triads), thereby
altering the distribution of structural mass. It is this assumption and its
consequences that introduce the errors into the Guyan reduction process.
Errors can be minimized, but not eliminated, by selecting an optimum set of
master DOFs. The selection process and resulting problems are the subjects
of the following sections.

Fedem 8.0 Theory Guide Model Reduction 3-5

Choice of master DOFs

Within a static/Guyan reduction, the slave freedoms should be those that do
not contribute much to the inertia forces in the dynamic response. Inertia
forces are the product of mass and acceleration; slave freedoms, therefore,
should be those points of low mass or low acceleration. Expressed differently,
the master freedoms should be defined at points where the inertia forces are
greatest; these correspond to points of high mass and low stiffness.

Problems of static reduction

It is very difficult to quantify the errors associated with static reduction.
Generally, the error in a given resonant frequency or mode shape increases
with eigenvalue number: the lower eigenvalues are predicted more accurately
than the higher ones. However, this rule is not absolute, and occasionally
some higher modes are predicted more accurately than lower ones. Any
predicted mode shape can only be a linear combination of the columns of the
transformation matrix, H. If H is deficient in the pattern of displacement
required by a given mode shape, that mode will not be predicted accurately.
If this is the case, the eigenvalues of the condensed system will be greater than
those of the original uncondensed system, resulting in a stiffer system than
that of the original.

The fewer the number of master freedoms (Triads), the greater the
potential error. To minimize error, the user must choose a sufficient number of
masters −preferably between two and ten times the number of required
modes. However, even with a factor of ten it is very difficult to predict more
than general consequences of the reduction. A choice of too many masters can
increase computational costs.

The original finite element equation system is heavily banded, and its
sparse nature enables efficient handling of large sets of equations. However,
the reduced, transformed set is fully populated, so that although fewer
equations are involved, they are much more densely packed and therefore
more costly to solve. If the original set of equations were of size n and average
bandwidth b, then the number of master freedoms, m, should satisfy m2 < bn.
If not, it is less expensive computationally to work with the original set of
equations without any reduction.

3-6 Model Reduction Fedem 8.0 Theory Guide

3

3.1.3 Dynamic condensing

Fedem uses a dynamic condensing technique that combines modal reduction
and static condensing. The disadvantage of modal reduction (apart from the
cost of determining the eigenvectors) is that it does not preserve the static
behavior of the structure, because the stiffness contribution from the modes
that have been ignored is never reinstated (refer to Figure 3.1). Conversely,
static condensing preserves static stiffness at the expense of dynamic effects.
In dynamic condensing, the transformation matrix, H, is largely based on the
eigenvectors associated with the lowest frequencies, as is the case with modal
reduction; but these eigenvectors are augmented by the static modes
associated with master freedoms, as in static condensation.

In dynamic condensing, static modes must be manipulated so that the
stiffness associated with lower modes (stiffness accounted for by the presence
of these modes) is not included twice. In Fedem, static modes are
complemented by ”fixed interface normal modes,” and these normal modes
(eigenvectors) are never included in the preserved static modes. Fixed
interface modes are computed by eigenvector analysis of the structure with all
the nodal DOFS (triad DOFS) fixed. A fixed DOF means defining its value as
zero and (usually) removing it from the equation system.

3.1.4 Dynamic substructuring

Another method of improving the computational efficiency of a dynamic
analysis is to use dynamic substructuring. However, its use also compromises
accuracy. The structure or mechanism is divided into a series of smaller
structures or substructures; in Fedem, these are called Links. The division
into Links in Fedem is based on physical identification of the various
mechanism components.

The transformation matrix in Fedem is defined in such a way as to preserve
the original freedoms and takes the following form for each Link:

ve represents the freedoms that connect to other Links or applied springs,
dampers, and loads.

vi represents the internal freedoms that are internal to a single Link.

q represents the generalized freedoms, internal to the reduced Link, that
are included to augment and improve the dynamic response (fixed
interface normal/component modes).

It is important to note that with this definition of H the connection freedoms
are preserved across the transformation, making assembly of the complete

Fedem 8.0 Theory Guide Model Reduction 3-7

mechanism relatively simple. However, this approach does place restrictions
upon the method of transformation.

The simplest way of forming the subcomponent is to base the
transformation upon Guyan reduction. Here the master freedoms are not
chosen arbitrarily, but are defined at the connection nodes (Triads) between
Links and the nodes at which springs, dampers, and loads are applied. There
are no augmenting freedoms q, and the transformation matrix is identical to
that of a Guyan reduction with the connection nodes/freedoms selected as the
master freedoms.

Internal component modes in dynamic substructuring

The accuracy of the dynamic behavior of a substructure can be improved
considerably by including extra terms in the augmenting freedoms, q, of the
transformation matrix. These terms are usually based on some of the system
eigenvectors, thus the process becomes very similar to that of the dynamic
condensing method described above. There are many ways of including these
terms, all of which lead to different variations of the dynamic substructure
method.

It is difficult to say which is the best method, as they all produce similar
results and their relative accuracy is dependent upon the specific problem
being analyzed. The various forms of dynamic substructuring can be classified
in one of two categories, depending on the way in which the eigenvectors are
formed. The most direct method is to calculate the substructure eigenvectors
with the connection nodes/freedoms fixed; this is the method employed in
Fedem. The alternative method is to calculate the eigenvectors of the
substructure with the connection freedoms free.

Fixed boundary dynamic substructure

If the eigenvectors of the substructure are calculated while the connection
freedoms are held fixed, the coordinate transformation matrix H contains the
first few eigenvectors of the fixed boundary substructure −the Φ term in
equation (3.13). The number of augmenting freedoms is then equal to the
number of these fixed interface modes. The static modes can be taken directly
from the Guyan reduction process with the connection freedoms as masters
−the B term in equation (3.13). This means that the behavior of the
substructure is defined by the static behavior of its connection freedoms and
the internal dynamic behavior of its augmenting freedoms. The representation
of the dynamic behavior of the substructure still includes some

3-8 Model Reduction Fedem 8.0 Theory Guide

3

approximations, but these become progressively less significant as more
eigenvectors are added to the augmenting set.

This combined approach, which is the method used in Fedem, is referred to
as the Component Mode Synthesis (CMS) method. The user can also add
extra Triads, which need not be connection nodes, for the purpose of
improving the dynamic behavior of the substructure.

Free boundary dynamic substructure

The alternative to the fixed boundary substructure is the free boundary form.
In this case the connection freedoms, v1, are left free, and the transformation
matrix is defined in terms of the eigenvectors. If the substructure has no
natural supports, the eigenvectors will include the rigid body modes to
represent the rigid body mass of the structure. The free boundary
substructure generally requires more calculations to form the transformation
matrix. This form of dynamic substructure ensures that the mass description
of the component is correct; the stiffness description, however, will only be
approximate. To recover correct stiffness behavior, at least for the connection
freedoms, the dynamic modes can be augmented by static modes1.

3.1.5 Summary

Fedem uses a state-of-the-art dynamic condensing method, Component Mode
Synthesis (CMS), which combines static and fixed-interface normal modes.
Fedem can also increase accuracy by including an additional distribution of
master DOFs (Triads). The CMS method is also well suited to flexible
mechanism analysis because it preserves the effective masses and inertias.

Depending on complexity and modeling detail, the finite element model of
a substructure can consist of a large or small number of FE nodes. These
nodes are divided into internal and external nodes. The external nodes are
defined during mechanism modeling as the connection points for joints,
springs, dampers, external loads, control input, points of interest, and so on.
These nodes are retained as so-called ”supernodes” during the reduction of
the substructure to a superelement.

1There are some indications that free boundary dynamic substructure methods are more
accurate than fixed boundary methods, depending upon the manner of implementation for
each method and the type of problem being solved.

Fedem 8.0 Theory Guide Model Reduction 3-9

3.2 Component mode synthesis reduction

For each substructure modeled, the status codes for the substructure DOFs
are set to 1 for internal DOFs and 2 for external DOFs. With this control
information, the system mass and stiffness matrices are assembled from the
corresponding element matrices. The first n1 DOFs of the system matrices are
internal substructure DOFs, and the next n2 DOFs are external.

In symbolic form, the substructure matrices for mass and stiffness can be
divided into submatrices, with index i for internal and e for external as follows:

M =

[
Mii Mie

Mei Mee

]
and K =

[
Kii Kie

Kei Kee

]
(3.2)

where Mxx are mass and Kxx are stiffness submatrices.

The stiffness relation for the substructure may now be expressed as:[
Kii Kie

Kei Kee

] [
vi
ve

]
=

[
Qi

Qe

]
(3.3)

where vx is the displacement vector and Qx is the load vector.

3.2.1 Static modes

The first line of equation (3.3) may be written:

vi = K−1
ii Qi −K−1

ii Kieve

= vii + vei
(3.4)

where vii represents internal displacements with fixed external DOFs, and vei
represents internal displacements as a function of external displacements.
Examination of each term provides

vii = K−1
ii Qi (3.5)

and
vei = −K−1

ii Kieve = Bve (3.6)

where
B = −K−1

ii Kie (3.7)

The set of nodal displacements [vei ve] represents the ”exact” solution of
static loads and boundary conditions acting on the external nodes (”exact” in
the sense that the model reduction has not in any way changed the solution in
relation to the solution of the full system).

3-10 Model Reduction Fedem 8.0 Theory Guide

3

3.2.2 Constrained dynamic modes

The substructure matrices can be reduced by CMS transformation to produce
a set of modes called Craig Bampton modes. This is done by eliminating the
internal DOFs as system DOFs, and replacing them with a limited number of
substructure vibration modes called generalized DOFs. The CMS
transformation starts with an eigenvalue analysis of the substructure system
matrices with the external DOFs fixed at zero. The equation for free,
undamped vibration of the substructure’s internal DOFs is written:

Miiv̈
i
i + Kiiv

i
i = 0 (3.8)

Considering simple harmonic motion, the displacement vii may be
expressed as:

vii = φ sinωt (3.9)

where the eigenvector φ is defined by the eigenvalue problem.(
Kii − ω2Mii

)
φ = 0 (3.10)

In a substructure with n active DOFs of which p are external DOFs, the
internal displacements vii can be expressed as:

vii =

S∑
k=1

φk yk = Φy (3.11)

where s < n− p, and

Φ =
[
φ1 φ2 · · · φs

]
(3.12)

is the eigenvector matrix and has dimensions (n− p)× s.

3.2.3 Reduced system

The superelement displacements are now expressed by the external DOFs ve
and by the new generalized DOFs y:

v =

[
ve
vi

]
=

[
I 0
B Φ

] [
ve
y

]
= H

[
ve
y

]
(3.13)

Usually only a few of the lowest modes of vibration need to be included to
achieve good results, and this may reduce the size of the problem substantially.
If all eigenmodes are included, s = n− p, the CMS transformation is exact.

Fedem 8.0 Theory Guide Model Reduction 3-11

3-12 Model Reduction Fedem 8.0 Theory Guide

4

Chapter 4 Co-rotated Formulation

During mechanism simulation, elements may undergo significant translational
and rotational displacements. Elements in this context may be superelements,
generic parts, or more “standard” elements as described in Chapter A. These
large displacements can have both rigid body and deformational components.
To obtain these components from the total displacements, a method called
Shadow Element Configuration is used, see Figure 4.1. In this figure, the
configurations are denoted as follows:

C0 − initial (reference) configuration

C0n − co-rotated shadow element configuration

Cn − current (deformed) configuration

C0 is the initial, undeformed configuration, and Cn is the deformed position at
step n. The shadow element configuration, C0n, is obtained by translating and
rotating the initial configuration C0 as a rigid body in such a way that the
“distance” between C0n and Cn is minimized.

This rigid body motion moves element nodes from their initial position
within the undeformed configuration, C0, to their position in the shadow

�
��

I1

- I2

6

I3

�
���i01
S
SSwi02

�
�
��

i03

sR2

sR1

s
R3

���9in1 A
AUi
n
2

�
�� in3s

R2

s R1

s
R3

s
s

s

C0 : initial or reference

Cn : deformed

C0n : “shadow”

Figure 4.1: Coordinate systems and configurations for an element

Fedem 8.0 Theory Guide Co-rotated Formulation 4-1

element configuration, C0n, whereas the deformational displacement moves
the nodes from their position in the shadow element configuration, C0n, to
their positions in the deformed configuration Cn.

The local coordinate system of configuration C0 moves and rotates with
the element and becomes the co-rotated coordinate system of C0n. In
addition, because the superelement matrices established in Chapter 3 were
defined in the element’s local coordinate system, the matrices remain constant
with respect to this co-rotated coordinate system. Thirdly, the co-rotated
coordinate system is common to both C0n and Cn.

When establishing the system matrices as described in Chapter 7, the
superelement matrices defined in Chapter 3 must be transformed to the global
coordinates for each new position of the mechanism during simulation. This
transformation to global coordinates is the subject of the next section.

4.1 Local element coordinate system

The element matrices are all expressed in a local element coordinate system.
For superelements this is the coordinate system in which the finite element
mesh was modeled at substructure level, and for generic parts this is simply
the local element coordinate system of the underlying rigid spider. In the
system analysis, this local coordinate system becomes the Element Co-rotated
Coordinate System (ECCS) because it moves with the element.

Regarding the nonlinear behavior of an element, the co-rotational
formulation is independent of whether the element is a reduced superelement,
resulting from the Component Mode Synthesis reduction described in
Section 3.2, a generic part element as described in Section A.16, or a more
traditional element as the other ones described in Appendix A. In the
following description of the co-rotational formulation, element and
superelement are thus interchangeable terms.

To calculate the transformations of the elements at each new position, the
directions for the corresponding ECCS must first be calculated based on the
positions of the element nodes.

4.1.1 Method 1: Best fit of max sized triangle

In this method, the ECCS is connected to three nodal points for each element.
The goal is to select among all nodal points within an element, those three
that form the largest triangle. This is achieved by the following algorithm:

4-2 Co-rotated Formulation Fedem 8.0 Theory Guide

4

1. The first reference point, R1, is selected as the node furthest away from
the centroid of all element nodes. This first reference point is always at
the node itself, i.e., zero offset.

2. The second reference point, R2, is selected as the node furthest away
from the point R1. If the element only has one node the same node is
used again, but with the second reference point defined by an offset of
unit length along the global x-axis from the nodal position.

3. The third reference point, R3, is selected as the node furthest from a
line through the points R1 and R2. If the element has only one or two
nodes, or the third node is on (or close to) this straight line1, the
reference point is defined using an offset from the third node so that the
three points form a proper triangle2. The direction of the third-node
offset vector is obtained by rotating the vector ~R12 from R1 to R2 90
degrees about either the global x-, y- or z-axis, depending on along
which global axis direction the ~R12 vector has its smallest component.

4. A temporary coordinate system is now formed based on the positions of
the three reference points. The origin is defined at R1, the x-axis is
defined in the direction from R1 to R2, the z-axis is next calculated from
the cross product of the x-axis and the axis extending from R1 to R3,
and finally the y-axis is calculated from the cross product of the z- and
x-axes. During the analysis, this coordinate system is recalculated for
each new position of the three reference points.

5. The position of the triangle system is always fixed in relation to the
ECCS during the analysis.

1The criterion for whether the third node is on the straight line between R1 and R2 can
be configured. Originally, this tolerance was absolute and equal to 0.001 regardless of the
model dimensions. Later, it was changed to half the distance between the first two points,
i.e., 0.5|~R12| but it is now configurable by setting the relative tolerance parameter ε in the

absolute tolerance ε|~R12|. The default value on ε is now 0.05.
2The offset on the third node (when needed) was originally selected simply as a vector of

unit length away from the straight line. This is clearly not a good strategy if the distance
between the first two nodes is much greater (or much less) than 1, since the resulting triangle
then will be far from even-sided. These shortcomings of the unit offset spurred an improved
method where the offset is scaled with respect to the distance between the first two points.
This results in a more even sided triangle, and a more robust coordinate system. The original
method is available for backward compatibility of older models.

Fedem 8.0 Theory Guide Co-rotated Formulation 4-3

Using the 4× 4 position matrix notation defined in equation (2.9), the
position matrix, PTE , relates the triangle coordinate system to the element
coordinate system:

PTE =

[
RTE p1

0 1

]
(4.1)

where RTE is the rotation or orientation of the triangle system measured in
the element system, and p1 is the position of the triangle system relative to
the element system (p1 is the position of R1 measured in the element
coordinate system).

It follows that the positions of the reference points measured in global
coordinates establish PTG, the position of the triangle coordinate system in
relation to the global system. The following relationship then relates the
triangle, element and global coordinate systems:

PTG = PEGPTE (4.2)

where PEG is the element coordinate system relative to the global system,
and is stated

PEG = PTGP−1
TE (4.3)

4.1.2 Method 2: Mass based weighted average

This method ultimately gives an expression requiring a weighted average of
the nodal discrepancies between the actual deformed element and the
undeformed shadow element to be zero. This expression can be established
from an equilibrium point of view.

One assumes that the (rigid) shadow element is attached to the deformed
element with springs, rotational and translational, at each node. The spring
stiffnesses at each node is selected to be, for instance, proportional to the mass
for translation and proportional to the inertia for the rotation of each node.
When the nodes move, the shadow element will reposition itself according to
equilibrium based on the redistribution of nodal displacements. The rigid
body motion of the shadow element is then represented by the motion of a
fictitious node at the Center of Gravity (CG) of the shadow element.

The equilibrium equations for the shadow element can be established
about CG. This yields six equations for the movement of the shadow element
as a function of the nodal displacements. The equations end up being
non-linear and have to be solved iteratively.

With kt as the mass-proportional translational stiffness in all three
directions at each node, and kr as inertia-proportional rotational stiffness in

4-4 Co-rotated Formulation Fedem 8.0 Theory Guide

4

all three directions, the stiffness of a spring element with two co-located nodes
i and j is given by

fi
mi

fj
mj

 =


ktI 0 −ktI 0
0 krI 0 −krI
−ktI 0 ktI 0

0 −krI 0 krI




vi
θi
vj
θj

 (4.4)

With node j being a dependent node rigidly attached to the node at CG,
one can establish the virtual displacement equation

vj = EivCG (4.5)

or [
vj
θj

]
=

[
1 −êi
0 1

] [
vCG

θCG

]
where ei =

 xi − xCG

yi − yCG

zi − zCG

 (4.6)

Using the kinematic relationship above in a virtual work expression, one
can establish the stiffness matrix for the spring between node i and the CG
node as

fi
mi

fCG

mCG

 =


kt 0 −kt ktê
0 kr 0 −kr
−kt 0 kt −ktê
êTkt −kr −êTkt (kr + êTkT ê)




vi
θi

vCG

θCG

 (4.7)

where kt = ktI and kr = krI.

The full stiffness matrix for the shadow element is then formed by the
assembly of all nodal contributions. Rewriting the equation above with a
slightly different notation:[

f i1
f i2

]
=

[
ki11 ki12

ki21 ki22

] [
vi1
vi2

]
(4.8)

the assembly for all nodes from 1 to n (where n+ 1 is the CG node) gives the
shadow element stiffness matrix:

f1
1
...
f i1
...

fCG

 =



k1
11 . . . 0 . . . k1

12
...

. . .
...

0 ki11 ki12
...

. . .
...

k1
21 . . . ki21 . . .

(
n∑
i=1

ki22

)





v1
1
...

vi1
...

vCG

 (4.9)

Fedem 8.0 Theory Guide Co-rotated Formulation 4-5

The equilibrium equation at the CG node is seen as the last 6 rows of the
assembled shadow element stiffness matrix, which can be rewritten as

fCG =

n∑
i=1

ki21vi or

[
fCG

mCG

]
=

n∑
i=1

[
−kit 0
êTkit −kir

] [
vi
θi

]
(4.10)

If the above equation does not yield zero forces and moments fCG at the
CG node when the deformational displacement vector is used, the shadow
element is given a corrective translation and rotation that will again alter the
deformation vector for all the nodes in according to equation (4.6), such that
the unbalanced forces and moments vanish.

Equilibrium of the CG node gives

fCG =

n∑
i=1

ki21vi =

n∑
i=1

ki21Ei ∆vCG (4.11)

Solving this with respect to increment in Shadow element position ∆vCG gives

∆vCG =

(
n∑
i=1

ki21Ei

)−1 n∑
i=1

ki21vdi (4.12)

The equation above is solved repeatedly until the deformational
displacement vector vd produces no update to the shadow element position
given by ∆vCG.

4-6 Co-rotated Formulation Fedem 8.0 Theory Guide

5

Chapter 5 Flexible Connections

5.1 Spring elements

A spring may be linear with a spring constant, or it may be nonlinear with
the spring stiffness explicitly or implicitly defined by a reference to a function.
The stiffness function is then a function of the spring deflection. The spring
stiffness and associated force can also be scaled by another function that can
be a function of any model variable. Axial springs are specified between two
supernodes in the mechanism model, while joint springs are specified directly
on the joint DOFs.

The actual stiffness expressions depend on whether the stiffness function is
defined explicitly or implicitly, i.e.,

Kel(δ, ·) =

{
S(·) [k0 + f(δ)] : f(δ) is explicit (stiffness function)

S(·)
[
k0 + df

dδ

]
: f(δ) is implicit (force function)

(5.1)

where

Kel : Elastic spring stiffness

S : Scale function

k0 : Constant stiffness

f : Explicit or implicit stiffness function

δ : Spring deflection, δ = l − l0, where l0 is the stress-free length

The associated spring force is defined by the expression

Fel(δ, ·) =


S(·)

[
k0δ +

δ∫
0

f(δ̂)dδ̂

]
: f(δ) is explicit

S(·) [k0δ + f(δ)] : f(δ) is implicit

(5.2)

where Fel is the elastic spring force, and the other quantities are as above.

Remark: Although the scale function S(·) in equations (5.1) and (5.2) in principle
may be a function of any model variable, you should avoid using one that directly
or indirectly depends on the spring deflection, δ, such as the spring velocity, δ̇, for
instance. If such a variable is used, there might be an inconsistency between the
spring stiffness and associated force that may lead to instabilities in the solution,
or poor convergence. The best is just to let it be some explicit function of time, t.

Fedem 8.0 Theory Guide Flexible Connections 5-1

For joint springs, the stiffness is added directly to the diagonal of the
system matrix on the actual DOF involved. For axial springs, the stiffness and
force act in the direction between the two end nodes. Since an axial spring
may be rotating, geometric stiffness terms must also be included, such that
the total stiffness matrix of the axial spring becomes

k = K i1 ⊗ i1 +
F

l
(i2 ⊗ i2 + i3 ⊗ i3) (5.3)

where K and F are the current stiffness and force in the spring, defined
through equations (5.1) and (5.2) respectively, and l is the current spring
length. The local coordinate system of the spring is defined through the basis
{i1, i2, i3} where i1 goes in the length direction. The operator ⊗ denotes a
dyadic product (outer product) between two vectors. The 3× 3 stiffness
matrix (5.3) is then added to the global system stiffness matrix on the DOFs
associated with the two connected nodes.

A spring may be used as a passive element with fixed stress-free
length/angle. However, it may also be used as an active drive element in the
mechanism where the stress-free length varies as a function of time in
accordance with an explicitly defined function.

By specifying springs on joint DOFs, special constraint effects may be
imposed, for instance the free joint may be used in this way to model
nonlinear bearings or rubber bushings. Effects like end stops, backlash in
gears, switches, temperature-dependent stiffness or other nonlinear effects may
easily be modeled in this way.

5.1.1 Failure and yield properties

The nonlinear behavior in a spring may also be modeled by specifying certain
failure and/or yield criteria. Failure is modeled by using equations (5.1)
and (5.2), only as long as the following conditions are satisfied

δf− < δ < δf+

Ff− < Fel < Ff+

(5.4)

where δf− and δf+ define the maximum spring deflection before the spring
fails, on compression and tension, respectively, whereas Ff− and Ff+ are
similar failure limits on the spring force.

When any of the conditions (5.4) are no longer fulfilled, the spring state is
changed to failed and it will no longer contribute to the system stiffness
matrix and force vector of the mechanism. This has the same effect as

5-2 Flexible Connections Fedem 8.0 Theory Guide

5

choosing a scale function in the stiffness and force expression (5.1) and (5.2)
equal to a step function

S(t) =

{
1 : t < tf
0 : t ≥ tf

(5.5)

where tf is the time at which the failure occurred.

When a joint spring reaches a failure state, this would normally cause an
abrupt redistribution of the forces in the joint, and in many cases one would
like to signal the failure in the other springs in the same joint too, when one of
its joint springs detects failure.

Hysteresis behavior and permanent deflection after unloading can be
introduced in a spring by specifying a yield criterion, which limits the spring
force to a specified maximum value Fy+ (on tension), or minimum value Fy−
(on compression). The actual stiffness and force in the spring will then be
given by

K(δ, ·) =

{
Kel(δ, ·) : Fy− ≤ Fel ≤ Fy+

0 : Fel < Fy− or Fel > Fy+

(5.6)

F (δ, ·) = min {max {Fel(δ, ·), Fy−} , Fy+} (5.7)

where Kel and Fel are the elastic stiffness and force, as defined
by equations (5.1) and (5.2), respectively.

When the spring is yielding, i.e., Fel /∈ [Fy−, Fy+], the “elastic” deflection
of the spring (the deflection used when evaluating the stiffness function) is
taken as δ = l − (l0 + δy), where δy is the yield deflection defined through

δy(t) =

t∫
ty

Fel − F
Kel

dt̂ (5.8)

where ty is the time at which the yielding first started, and F is the actual
spring force defined by equation (5.7). When the spring re-enters an elastic
state due to unloading, the integrand of equation (5.8) becomes zero such that
δy then remains constant until the yield limit is reached again.

The yield limits, Fy−1 and Fy+1 may be either constant values or functions
of another model variable. The latter may be used to to model clutch-like
behavior in joint springs, where you can smoothly (or abruptly)
engage/disengage the motion constraint enforced by the spring.

Fedem 8.0 Theory Guide Flexible Connections 5-3

5.1.2 Interconnected spring elements

Springs with a nonlinear force–displacement curve can be used to model
certain typical joint characteristics. A “trailer-hitch” connection has typically
a certain play where it has no stiffness or force resisting displacement. This
can be modeled using a spring with a stiffness–displacement curve where we
have a zero stiffness “play” area around zero displacement. Alternatively, this
is achieved with a corresponding force–displacement curve. However, we seek
to have this play and nonlinear force–displacement behavior to be
independent of the displacement direction, when the displacement is taken in
an arbitrary radial direction. With constant stiffness and independent springs
in, for instance, the X and Y directions we will achieve this, but when the
stiffness is nonlinear the force–displacement response gets a distinct “square”
characteristic when subjecting the hitch or joint to a rotating force. This can
be circumvented by interconnecting the displacements and force–displacement
curves in the two directions.

The interconnected displacement is defined as

δ̄i =

√∑
j

Bijδ2
j where Bij =

 1 : i = j
1 : DOF i and j are interconnected
0 : otherwise

(5.9)

The interpolated displacement δ̄i is used for calculating an interpolated force
based on all the individual DOF springs defined according to equation (5.2)

F̄ i =
∑
j

sign(δj)NijFj(δ̄
i sign(δj)) (5.10)

where

Nij =

(
δj
δ̄i

)2

and sign(δj) =

{
1 : δj ≥ 0
−1 : δj < 0

(5.11)

We are using an interpolation of the individual spring functions in order to
handle oval characteristics defined by different stiffness functions for, for
instance, the X and Y DOFs. The interpolated force value F̄ i is then
decomposed along each of the interconnected DOFs as

F̄ ij = cijF̄
i with direction cosines cij =

δj
δ̄i

(5.12)

Remark: You should avoid using the interconnectivity functionality between
springs with constant stiffness. No additional cylindrical or spherical behavior is
achieved by this, while reduced stability can be experienced due to 0/0 terms in equa-
tion (5.12) when displacements are close to zero and springs are interconnected.

5-4 Flexible Connections Fedem 8.0 Theory Guide

5

The (material) stiffness terms for the interconnected springs are obtained
in a similar fashion as the force components, i.e.

K̄Mi =
∑
j

NijKj(δ̄
i sign(δj)) (5.13)

where Nij is defined in equation (5.11). The components of the material
stiffness matrix K̄Mi can then be written as

K̄Mi
jk = cijcikK̄

Mi (5.14)

Since the direction of the interpolated spring force, F̄ i, depends on the
current solution state through the direction cosines cij , geometric stiffness
terms are needed in addition to the material stiffness (5.14), for the
translational components. Let i1 denote the current direction for the
interconnected spring, i.e., i1 = {ci1, ci2, ci3}T and i2 and i3 being two
perpendicular unit vectors such that {i1, i2, i3} forms an orthonormal basis.
Assuming the stress-free length of the spring is zero, the total tangent stiffness
matrix for an interconnected translatory spring is then given as

K̄i = K̄Mi + K̄Gi where K̄Gi =
F̄ i

δ̄i
(i2 ⊗ i2 + i3 ⊗ i3) (5.15)

The equation (5.15) holds for translatory springs coupled in all three
coordinate directions (flexible ball joint behavior). If only two of the three
coordinate directions are coupled (flexible revolute joint behavior), we have

K̄Gi =
F̄ i

δ̄i
i2 ⊗ i2 (5.16)

where i2 = i3 × i1, and i3 is the unit vector in the coordinate direction that is
not coupled (rotation axis of the flexible revolute joint).

5.1.3 Global spring elements

Instead of using an axial spring which has the important property that it
contributes to stress stiffening in the overall system through its geometric
stiffness, an alternative is to specify independent spring properties on one or
several of the global DOFs between two nodes in the system, or between one
node and ground. This is much the same as using a free joint with all DOFs
spring-constrained. However, in the global spring element the joint variable
transformation outlined in Section 6.2.6 is not performed and the resulting

Fedem 8.0 Theory Guide Flexible Connections 5-5

stiffness coefficients are added directly into the system stiffness matrix for the
DOFs associated with the two nodes in question.

The updated spring lengths in a global spring element, that are needed for
the computation of the stiffness and force in each DOF, are defined as

l = [lx ly lz]
T

= x2 − x1 (5.17)

α = [αx αy αz]
T

= EulerZYX(RT
1 R2) (5.18)

where xi is the updated global position vector of node i, and Ri is the
orthonormal transformation matrix defining its orientation. The operator
EulerZYX(·) extracts the Euler Z-Y -X angles from the provided orthonormal
transformation matrix, as outlined in Section 2.3.6. The corresponding spring
deflections are then taken as δ = l− l0 and θ = α−α0, with l0 and α0 being
the initial stress free lengths.

Remark: When rotational stiffness is assigned to a global spring, it is imperative
that the orientations of the two nodes are initially identical or close to each other,
and that they are unlikely to exhibit large relative rotations. The background for
this is that the Euler angle extraction operator is valid for small rotations only.
Actually, the operator is singular for certain rotation states (i.e., when one have
0/0-situations in some of the equations (2.36)–(2.38). For the same reason, using
soft global springs with rotational stiffness may also render the solution unstable
and should be avoided.

Especially in situations when the distance between the two nodes is large,
global spring elements may yield a more stable solution than using a regular
free joint, since a small rotation change in one end then may correspond to a
large translation change at the other end, due to the long arm. The global
spring element is a system level equivalent to the BUSH element on the FE
link level (see Section A.10) but with the important distinction that a global
spring may account for nonlinear spring properties.

5.2 Damper elements

A damper may be linear with a damping constant, or it may be nonlinear
with the damping coefficient defined by a reference to a function. The
damping coefficient is a function of the damper velocity. The damping
coefficient and associated force can also be scaled by another function that
can be a function of any model variable. A wide range of energy dissipation
effects may be modeled by damper elements. Axial dampers are specified
between two supernodes in the mechanism model, while joint dampers are
specified directly on the joint DOFs.

5-6 Flexible Connections Fedem 8.0 Theory Guide

5

The actual damping coefficient expression depend on whether the damping
function is defined explicitly or implicitly

C(v, ·) =

{
S(·) [C0 + f(v)] : f(v) is explicit (damping function)

S(·)
[
C0 + df

dv

]
: f(v) is implicit (force function)

(5.19)

where

C : Damping coefficient

S : Scale function

C0 : Constant damping

f : Explicit or implicit damping coefficient function

v : Damper velocity

The associated damper force is defined by the expression

F (v, ·) =


S(·)

[
C0v +

v∫
0

f(v̂)dv̂

]
: f(v) is explicit

S(·) [C0v + f(v)] : f(v) is implicit

(5.20)

where F is the damper force or moment, and the other quantities are as above.

Remark: Although the scale function S(·) in equations (5.19) and (5.20) in prin-
ciple may be a function of any model variable, you should avoid using one that
directly or indirectly depends on the damper velocity, c, such as the damper deflec-
tion, for instance. If such a variable is used, there will be an inconsistency between
the damping coefficient and associated force that may lead to solution instabilities
or poor convergence. The best is just to let it be some explicit function of time, t.

For joint dampers, the damping coefficient is added directly to the
diagonal of the system damping matrix on the actual DOF involved. Axial
dampers are handled in a similar way as axial springs, that is, they result
both in an damping matrix and geometric stiffness matrix to be added into
the corresponding system matrices for the nodal DOFs involved:

c = C i1 ⊗ i1 (5.21)

kg =
F

l
(i2 ⊗ i2 + i3 ⊗ i3) (5.22)

where C and F are the current damping coefficient and damper force defined
through equations (5.19) and (5.20) respectively, and l is the damper length.

By specifying dampers on joint DOFs, special constraint effects may be
imposed, for instance the free joint may be used in this way to model damping
in nonlinear bearings or rubber bushings. Effects like switches, temperature
dependent damping or other nonlinear effects may be modeled in this way.

Fedem 8.0 Theory Guide Flexible Connections 5-7

5.3 Spring-constrained joints

All joint variables for the master-slave based joints, such as revolute joints,
ball joints, prismatic joints, etc., may be constrained by springs. The free
joint has no degree of freedom constraint and is usually the basis for modeling
spring-constrained joints. The reason for making joints spring-constrained can
be to model the flexibility of an actual bearing or model nonlinear effects like
clearings, rubber bushings, etc. To be able to easily switch between
master-slave constrained joints and spring-constrained joints, the position and
orientation of triads for spring-constrained joints should be the same as for
the corresponding master-slave constrained joint.

The flexible revolute joint is usually modeled from a free joint with relative
constraining springs on the x, y and z translational variables and on the x and
y rotational joint variables. The rotation about the z-axis will be the joint
variable. The stiffness of the springs on the different joint variables should
comply with the actual translational and rotational stiffness of the bearing.
Nonlinear stiffness like in rubber bushings or in bearings with clearing should
be modeled by nonlinear springs. The translatory springs in the local x and y
directions may need to be interconnected, as described in Section 5.1.2, in
order to achieve equal behavior for any load direction in the joint.

The flexible ball joint will also usually be based on a free joint and with
constraining springs for the x, y and z translational variables. The stiffness
for the springs will be set according to joint stiffness and possible
nonlinearities as for the revolute joint above. All three translatory springs
may need to be interconnected, as described in Section 5.1.2, in order to
achieve equal behavior for any load direction in the joint.

The flexible prismatic joint will usually be modeled from one or more free
joints. The z-axis of the joint triads should be along the direction of the joint
variable, the joint axis. If the flexible prismatic joint is based on only one free
joint, all joint variables should have constraining springs except the variable
along the joint axis, that is the z direction of the joint. If two or more free
joints are used, the orientation of the corresponding triads should be the same
and with the z-direction along the joint axis. For the free joints constituting
the flexible prismatic joint, the joint variables in x and y directions and
rotation about z should have constraining springs. The rotation variables
about the x and y directions for the actual free joints will usually have no
constraining springs, see the master-slave based prismatic joint. Translational
clearing in the joint could be modeled by nonlinear constraining springs for x
and/or y translation and rotational clearing about the z-axis is modeled by
nonlinear constraining springs for the z rotation.

5-8 Flexible Connections Fedem 8.0 Theory Guide

5

The flexible cylindric joint is modeled in a very similar way as the flexible
prismatic joint described above. However, there is no constraining spring for
the z rotation. This joint will have two joint variables, the translation along
and the rotation about the joint axis that is the z-axis of the triads.

Besides the options for modeling constraints mentioned above, you have
almost unlimited options for modeling different constrained motions.
However, you should be aware of what effects could result from the fact that
rotations in space do not commute, see Section 2.3.5.

Fedem 8.0 Theory Guide Flexible Connections 5-9

5-10 Flexible Connections Fedem 8.0 Theory Guide

6

Chapter 6 Modeling of Joints

6.1 Master and Slave based Joint Modeling

A joint is a way of specifying a constrained relative motion between two
bodies or links in a mechanism. In the finite element modeling of mechanism
joints, superelement nodes are used to specify the joint constraints. A joint
between two moving links, denoted 1 and 2, will in general be defined by one
node on link 1, called the slave triad, and one or more nodes on link 2, called
the master triad(s). The constraints are then modeled by making all DOFs of
the slave triad dependent on all DOFs of the master triad(s), and DOFs of the
joint itself.

6.2 Single-master Joints

The position of the slave triad relative to the master triad is given by

PSG = PMGPJTPN · · ·P1PSJ (6.1)

where the interpretation of each term is as follows:

PSG Position of Slave triad measured in the Global coordinate system.
The position is ultimately a function of the DOFs of the master
triad and the joint DOFs.

PMG Position of Master triad measured in the Global coordinate system.
This matrix is a function of the master triad DOFs and is thus
subject to variation.

PJT Position of the Joint measured in the master Triad coordinate
system. This matrix handles a possible offset of the joint relative to
the master triad, as well as joint orientation possibly different from
that of the master triad. The matrix is constant (carries no DOFs)
and is thus not subject to variation.

Pi Joint variable matrices, numbered from 1 to N . Each matrix can
have from 1 to 6 DOFs, or joint variables (three translations and
three rotations). When all joint variables are zero, each of the
matrices Pi becomes unity, and equation (6.1) simplifies to
PSG = PMGPJTPSJ .

Fedem 8.0 Theory Guide Modeling of Joints 6-1

PSJ Position of the Slave triad measured in the Joint coordinate system,
when all joint variables are zero. This matrix handles a possible
offset of the joint relative to the slave triad, as well as joint
orientation possibly different from that of the slave triad. This
matrix is also constant, and is thus not subject to variation.

Note that the position of the joint itself, in the global system, is given by

PJG = PMGPJT (6.2)

The N joint variable matrices Pi can be thought of as describing the
relative motion between N + 1 bodies. With one single joint variable matrix
the two bodies will be the master- and slave link, respectively (slave link as
body 1, and master link as body 2). With two or more joint variable matrices
the intermediate bodies are of course purely fictitious, although a very useful
mental concept. The joint variables associated with joint variable matrix Pi

are expressed in the coordinate system of body i+ 1. According to (6.1), this
gives the following coordinate system, δũ1 = 0, for these joint variables:

RCi
= RMGRJTRN · · ·Ri+1 and RCN

= RMGRJT (6.3)

Variation of equation (6.1) provides an expression for the slave DOFs as a
linear combination of the free master DOFs, i.e.

δPSG = δPMGPJTPN · · ·P1PSJ

+ PMGPJT δPN · · ·P1PSJ

...

+ PMGPJTPN · · · δP1PSJ

(6.4)

since δPJT = 0 and δPSJ = 0 according to the definitions above.

The first term of equation (6.4) provides a linear coupling to the master
triad DOFs, and can be expressed as[

δus
δωs

]
M

=

[
I êSM
0 I

] [
δum
δωm

]
(6.5)

where eSM is the position of the slave triad relative to the master triad,
measured in global system. For simplicity, it is here assumed that both the
master and slave triad have DOFs in global directions.

The variation with respect to the joint variables of a given joint variable

6-2 Modeling of Joints Fedem 8.0 Theory Guide

6

matrix Pi, can be expressed as[
δus
δωs

]
i

=

[
I êSi
0 I

] [
RCi 0
0 RCi

] [
0 0
0 Hi

] [
δũi
δθ̃i

]
=

[
RCi

êSiRCi
Hi

0 RCiHi

] [
δũi
δθ̃i

] (6.6)

where eSi is the position of the slave triad relative to body i+ 1, measured in
global system. The matrix RCi defines the coordinate system of joint variable
matrix i according to equation (6.3). The rotation gradient matrix H = ∂ω

∂θ is
given by equation (2.20). Note that in case of only one rotational DOF for
joint variable matrix Pi, this simplifies (in effect) to Hi = I.

6.2.1 Revolute Joint

A revolute joint is modeled from two supernodes located on different links in a
mechanism, see Figure 6.1. The joint position matrix PJT orients the joint
coordinate system to have local z-axis along the axis of relative rotation. The
joint has one joint variable matrix with a single DOF, θ̃z:

PSG = PMGPJTP1(θ̃z)PSJ (6.7)

6Z

66̃θz

�
�
�	

Xi

H
HHHjXj

Figure 6.1: Coordinate axis and variable of revolute joint.

Fedem 8.0 Theory Guide Modeling of Joints 6-3

Optionally, the joint may also have free motion in the z-direction, in which
case it has the additional DOF w̃:

PSG = PMGPJTP1(w̃, θ̃z)PSJ (6.8)

The joint produces six constraint equations, one for each slave triad DOF.
Variation of the default revolute joint, equation (6.7), will be that of
equations (6.5) and (6.6) with the simplifications H1 = I, δũ1 = 0, and
δθ̃1 = [0 0 δθ̃z]

T . With the additional freedom in z as in equation (6.8), the
only change is δũ1 = [0 0 δw̃]T .

6.2.2 Universal Joint

A universal joint consists of three bodies: Input Shaft, Center Cross, and
Output Shaft. It is thus modeled with two joint variable matrices to describe
the relative motion between the three bodies (the center cross body is only
implicitly defined through the joint formulation):

PSG = PMGPJTP2(θ̃z)P1(θ̃y)PSJ (6.9)

The matrix P2(θ̃z) here describes the relative motion (rotation) between the
master body and the center cross. The rotation axis is the z-axis of the joint
coordinate system. The matrix P1(θ̃y) describes the rotation between the
center cross an the slave body. The rotation axis is here the y-axis of the cross
coordinate system. The y-axis of the cross coordinate system is initially
coincident with the y-axis of the joint coordinate system. The joint coordinate
system will normally be that of the master triad.

6.2.3 Constant Velocity Joint

A constant velocity joint is modeled using the fact that two universal joints
connected via an intermediate shaft will give a constant rotational velocity,
provided that each joint absorbs half of the total angle between the input and
output shaft. This gives a joint formulation with 4 joint variable matrices, and
two constraint equations that ensure the equal shaft-axis angle between the
two fictitious universal joints:

PSG = PMGPJTP4(θ̃z4)P3(θ̃y3)P2(θ̃y2)P1(θ̃z1)PSJ (6.10)

with the additional linear constraint equations

θ̃z4 = θ̃z1 and θ̃y3 = θ̃y2 (6.11)

6-4 Modeling of Joints Fedem 8.0 Theory Guide

6

6.2.4 Ball Joint

A ball joint is modeled from two supernodes located on different links in a
mechanism, see Figure 6.2. The default ball joint formulation has Euler angles
Z − Y −X as joint DOFs:

PSG = PMGPJTP3(θ̃z)P2(θ̃y)P1(θ̃x)PSJ (6.12)

In addition, the ball joint is available with components of the rotation axis as
joint DOFs:

PSG = PMGPJTP1(θ̃z, θ̃y, θ̃x)PSJ (6.13)

The formulation with the rotation axis parameterization may be used if
the default formulation runs into singularities with respect to the Euler
angles. If singularity arises for the Euler angles, one may also try rotating the
joint (different initial orientation).

6.2.5 Rigid Joint

A rigid joint (see Figure 6.3) contains no joint variable matrices since there is
no relative motion between the master and slave bodies. The joint allows a
rigid coupling between two nodes that need not be coincident, nor is there a
limitation on common directions in space:

PSG = PMGPJTPSJ (6.14)

Figure 6.2: Coordinate system i and j of a ball joint

Fedem 8.0 Theory Guide Modeling of Joints 6-5

Figure 6.3: Coordinate axis of rigid joint.

The rigid joint is often used for accessing internal forces through the joint
at system level during simulation.

6.2.6 Free Joint

The free joint (see Figure 6.4) is modeled from two supernodes located on
ground or different links in a mechanism. There is full freedom of motion
between the links, provided by six joint variables. The three translational
joint variables are in the coordinate system of the joint itself, and the three
rotational joint variables are Euler angles Z − Y −X. This gives the joint
formulation as

PSG = PMGPJTP3(ũ, ṽ, w̃, θ̃z)P2(θ̃y)P1(θ̃x)PSJ (6.15)

The free joint is also available with components of the rotation axis as joint
DOFs:

PSG = PMGPJTP1(ũ, ṽ, w̃, θ̃z, θ̃y, θ̃x)PSJ (6.16)

The reason for having this joint is to facilitate introduction of constraints,
prescribed motions and spring/damper properties on the DOFs represented by
the joint variables rather than the global triad DOFs. Note that an entirely
spring-based free joint formulation, without the joint variable transformations
given by equations (6.15) and (6.16), also is available for this joint type, see
Section 5.1.3.

6-6 Modeling of Joints Fedem 8.0 Theory Guide

6

Figure 6.4: Coordinate system i and j for a free joint.

6.2.7 Axial Joint

An axial joint is modeled from two supernodes located on two different links.
The joint position matrix PJT orients the joint coordinate system to have its
local x-axis pointing from the master triad to the slave triad. The joint has
one joint variable matrix with a single DOF, ũ, the displacement along the
local x-axis:

PSG = PMGPJTP1(ũ)PSJ (6.17)

6.3 Multi-master Joints

The multi-master joints have the same formulation with respect to the relative
motion between the joint itself and the slave triad, as single-master joints.
These joints have an additional variable, called the slider variable s, which
expresses the position of the joint (or follower) along a curve defined by N
master triads, i.e, PJG(s). For each master triad, the joint position relative to
the triad itself is defined through PJTi

, such that the path the follower is to
travel along does not need to go through the triads themselves. This can be
expressed as

PJG = P(s,PJG1
, · · · ,PJGN

) where PJGi
= PMGi

PJTi
(6.18)

which resembles the similar expression for the single master joint in
equation (6.2).

Fedem 8.0 Theory Guide Modeling of Joints 6-7

The variation of equation (6.18) with respect to the N master triads is[
δus
δωs

]
M

=

N∑
i=1

f(s)i

[
I êSMi

0 I

] [
δumi

δωmi

]
(6.19)

which closely resembles the similar expression for the single master joints,
equation (6.5). If the follower is positioned between node k and l, the
interpolation functions f(s)i will be

f(s)k = (−s− sl)/(sl − sk)

f(s)l = (s− sk)/(sl − sk)

f(s)i = 0 for i 6= k and i 6= l

(6.20)

6.3.1 Prismatic Joint

The prismatic joint is modeled from three or more supernodes where one node,
the slave triad, is located on the first link while two or more nodes, the master
triads, are located on the second link. The master triads define a straight line
along which the sliding occur, see Figure 6.5. The slave link can rotate about
the x- and y-axes of the joint, which gives the following parameterization:

PSG = PJG(s, · · ·)P2(θ̃y)P1(θ̃x)PSJ (6.21)

The z-axis of the joint is always pointing in the positive curve direction.

To model telescopic motion, two parallel prismatic joints of this type is
used between the same two links of the mechanism.

Figure 6.5: Prismatic joint with slave and master nodes.

6-8 Modeling of Joints Fedem 8.0 Theory Guide

6

6.3.2 Cylindric Joint

The cylindric joint closely resembles the prismatic joint, but the slave link is
also free to rotate about the master line itself. The joint coordinate system
has, as for the prismatic joint, the local z-axis along the master curve in
positive direction, which gives the parameterization:

PSG = PJG(s, · · ·)P3(θ̃z)P2(θ̃y)P1(θ̃x)PSJ (6.22)

The rotation can also be parameterized using rotation axis components:

PSG = PJG(s, · · ·)P1(θ̃z, θ̃y, θ̃x)PSJ (6.23)

6.3.3 Cam Joint

The cam surface is defined by a curve through an ordered set of master triads.
If the first and last master are identical, the cam has a closed surface. The
curve tangent defines the local z-axis of the joint coordinate system. Its local
x-axis corresponds with the surface normal direction, and is defined from the
local x-axis direction of the master triads along the curve.

Currently, the curve defining the cam surface can consist of straight lines
and circle arcs only, each made up of three nodes, see Figure 6.6. A straight
line is simply an arc with zero curvature (1/R ≈ 0).

Remark: It is worth noticing that a sudden change in radii of the curve gives a
discontinuity in the second derivative, resulting in sudden forces in the cam.

The default master-slave based cam parameterization has full rotational
freedom of the slave link relative to the follower, as well as translational DOFs
in the local x- and y-direction of the follower, which gives

PSG = PJG(s, · · ·)P3(ũ, ṽ, θ̃z)P2(θ̃y)P1(θ̃x)PSJ (6.24)

The translational DOFs can be suppressed entirely, and individually, which
give the following three alternative formulations for the cam joint:

PSG = PJG(s, · · ·)P3(ũ, θ̃z)P2(θ̃y)P1(θ̃x)PSJ (6.25)

PSG = PJG(s, · · ·)P3(ṽ, θ̃z)P2(θ̃y)P1(θ̃x)PSJ (6.26)

PSG = PJG(s, · · ·)P3(θ̃z)P2(θ̃y)P1(θ̃x)PSJ (6.27)

The rotation can also be parameterized using rotation axis components as for
the ball-, free- and cylindric joints, i.e., instead of equation (6.24) we have:

PSG = PJG(s, · · ·)P1(ũ, ṽ, θ̃z, θ̃y, θ̃x)PSJ (6.28)

and similarly for equations (6.25)–(6.27).

Fedem 8.0 Theory Guide Modeling of Joints 6-9

Figure 6.6: Cam curve composed of a circle arc, a straight line, a circle arc
and another circle arc. The first and last arcs consist of two curve segments (5
nodes). The straight line and the second arc consist of one curve segment each.

6.3.4 Spring-based cam joint formulation

Contact between the slave triad and the cam surface can be modeled using
the formulation described above in Section 6.3.3, by introducing non-linear
springs in the two translational joint variables ũ and ṽ of equation (6.24), or
in one of them only by using equation (6.25) or (6.26). However, in situations
with large relative separation between the slave triad and the cam curve, or if
the cam curve has sharp corners (infinite curvature), the solution might
become unstable using this formulation.

A more robust alternative is to use a purely spring-based formulation for
such contact problems1. This is actually a multi-master equivalent to the
global spring element described in Section 5.1.3. That is, it does not involve a
transformation of the free variables according to equations (6.24)–(6.28).
Instead, the stiffness and force contributions from the springs are added
directly to the slave and (some of) the master triad DOFs of the cam joint.

A set of (up to) six orthogonal joint springs (three translational and three
rotational springs) connect the slave node to the follower location on the cam
curve, i.e., the projection of the slave location onto the cam curve along the

1This spring-based formulation has actually been the default formulation in Fedem since
version R2.5m3.

6-10 Modeling of Joints Fedem 8.0 Theory Guide

6

local x-direction, see Figure 6.7. A spring must always be present in the local
x-direction (the surface normal direction), otherwise no contact would be
established. In the other five directions, spring-constraining is optional.

Remark: The remark on rotational stiffnesses in global spring elements given in
Section 5.1.3, also applies to the spring-based cam joint. Therefore, when using
rotational springs, make sure they are stiff enough to avoid large relative rotations.

The springs are assumed located at the contact point, C, with rigid arms
to the slave node (S) and the master secant point (M), respectively. Let
kc = dkic and fc = {fi}, i = 1 . . . 6, denote the diagonal stiffness matrix and
the associated force vector of the compound joint spring in its local system.
The contributions to the slave node are then found as

ks = TskcT
T
s and fs = Tsfc with Ts =

[
I 0
ês I

]
(6.29)

where es = xc − xs is the eccentricity vector from the slave node to the
contact point, C. Similarly, the contributions to master node i are found as

ki = −fi(ξ)TmkcT
T
m , fi = −fi(ξ)Tmfc with Tm =

[
I 0

êm I

]
(6.30)

where em = xc − xm is the eccentricity vector from the master secant point
(M) to the contact point, and the function fi(ξ) is a linear interpolation
function distributing the contributions to the two closest master nodes, and is
given by equation (6.20).

slave node; S

z
x

master node; i

j

k

contact point; CH
HHj

master secant point; M
@

@
@

@@I

Figure 6.7: The geometry of the spring-based cam joint.

Fedem 8.0 Theory Guide Modeling of Joints 6-11

The updated spring lengths in the spring-based cam joint are computed
similarly as for the global spring element of Section 5.1.3. However, for the
rotational springs we now always assume zero initial angle and deflection,
regardless of the modeling configuration, such that the computations become

l = [lx ly 0]
T

= RT
c (xs − xc) (6.31)

α = [αx αy αz]
T

= EulerZYX(RT
c RT

s RT
s0Rc0) (6.32)

Here, xs and xc denote the current global position vectors of the slave node
and the contact point, respectively, whereas Rs and Rc denote the associated
transformation matrices representing their current orientation, and Rs0 and
Rc0 are the corresponding orientations of the initial (modeling) configuration.
It also possible to assign spring properties to the local z-direction, and the
spring length lz is then identical to the current curve length position, s.

Radial contact spring

By assigning stiffness functions that have zero stiffness in a certain deflection
range around zero, and a high stiffness on both sides outside this range, it is
possible to model that the slave should remain inside a cylindric surface along
the cam curve. However, for this cylinder to have a circular cross section (like
a pipe), the contact spring(s) should be effective in a radial coordinate system
(r, θ), rather than the local Cartesian system (x, y).

The polar spring lengths (lr, lθ) are obtained from equation (6.31) through

lr =
√
l2x + l2y and lθ = arctan

(
ly
lz

)
(6.33)

The corresponding spring stiffnesses and forces are then applied in the radial
r-direction, and in the circular θ-direction defined such that the θ-axis is
orthogonal to both the r- and z-directions, and (r, θ, z) forms a right-handed
system. In addition, we get a geometric stiffness contribution in θ-direction of
magnitude Fr/lr where Fr is the computed spring force in r-direction, due to
the changing direction of the radial spring.

Remark: The radial contact spring must have zero stiffness for small spring lengths
or deflections. Otherwise, the geometric stiffness term, Fr/lr, will go to infinity
and cause solution instabilities.

6.4 Master and Slave based Transmissions

Master and slave based transmissions are expressed using linear dependencies
between selected joint variables of the various joint types described above.

6-12 Modeling of Joints Fedem 8.0 Theory Guide

6

6.4.1 Gear Joint

The gear joint is based on two revolute joints, one for the input shaft and one
for the output shaft. The master triads for these two joints must be placed on
the same link—the gear housing. Setting the gear ratio to N , the linear
dependency of the rotational joint DOFs becomes

θzO = N θzI (6.34)

where subscript O designates the output shaft, and I the input shaft.

6.4.2 Rack and Pinion

The rack–and–pinion is based on a revolute joint and a prismatic joint. The
master triads of the revolute joint and prismatic joint should be placed on the
same link—the joint housing. The linear dependency of the rack–and–pinion
becomes

sO = N θzI (6.35)

when using subscript O for the slider variable of the prismatic joint, and
subscript I for the rotational DOF of the input shaft.

6.4.3 Screw Joint

The screw joint is based on a cylindric joint. The slider DOF is now
connected to the rotational DOF about the joint z-axis, which gives the linear
dependency

sO = N θzI (6.36)

6.5 Joint Friction

Friction is calculated from forces, moments, and relative velocity in a joint.
The friction properties consist of viscous friction, Coulomb dry friction,
modified Stribeck friction, and friction force caused by prestressed
components. The Stribeck friction yields a continuous description of the
friction from static to sliding movement.

Forces and moments in the joint give an equivalent load, which is the basis
for computing the acting friction force in the joint. The equivalent load for
the various joint types is given in the Sections 6.5.5–6.5.8 below.

Fedem 8.0 Theory Guide Modeling of Joints 6-13

6.5.1 Viscous friction

Viscous friction can act between any two supernodes or on any joint variable.
The damper force or torque is equal to the damper’s viscous coefficient
multiplied by the damper velocity.

Fviscous = c V (6.37)

where c is the damper coefficient.

6.5.2 Coulomb friction

In classical Coulomb friction models, there is a constant friction force
opposing the motion when the velocity is non-zero. In the case of zero
velocity, the friction opposes all motions as long as the force is smaller in
magnitude than the friction force (see Figure 6.8)

FCoulomb = µCoulomb Fe sgn(V) (6.38)

where

FCoulomb : Coulomb friction force

µCoulomb : Coefficient of friction

Fe : Equivalent normal load

V : Velocity

sgn(V) : The direction of movement (±1)

-

6

F
ri
ct
io
n

F

Velocity

V

FCoulomb

Figure 6.8: Coulomb friction

6-14 Modeling of Joints Fedem 8.0 Theory Guide

6

Reduction gears and bearing set-ups are often prestressed to avoid
backlash. This prestress produces friction even when the external load is zero.
This friction component, which is added to the Coulomb friction term. is
defined as (see Figure 6.9):

Fprestress = F0 sgn(V) (6.39)

where F0 is the friction force or torque caused by prestressed components or
other constant friction effects.

6.5.3 Modified Stribeck friction

Modified Stribeck friction defines friction as a constant at extremely low
velocities, then making a smooth transition from higher static friction to the
lower kinetic, or kinetic plus viscous, friction. A model using modified
Stribeck friction predicts a steady motion at extremely low velocities,
instability through a range of velocities, and stable motion above a certain
threshold velocity.

Experiments have verified that after the stiction force has been
surmounted, the friction decreases exponentially reaching approximately 60%
of the breakaway force. These bends occur at velocities close to zero. Detailed
experiments carried out in industrial manipulators and reduction gears have
confirmed this negative velocity dependence at low velocity. The hysteresis
effect is also added into the Stribeck friction. It has been observed that the
friction curve is not single-valued. There is a static friction force that is higher
than the kinetic friction, and the friction does not return to the higher static

-

6

Friction

Velocity

V -

6

Friction

Normal load

Fe

F0

−F0

Figure 6.9: Friction caused by prestressed components

Fedem 8.0 Theory Guide Modeling of Joints 6-15

value when the sliding velocity decreases. This means that the friction
remains at the low Coulomb friction value until the velocity has changed sign
or is zero (see Figure 6.10):

FStribeck = FCoulomb(1 + Se
−(V

Vslip
)2

) sgn(V) (6.40)

where

FStribeck : Stick-slip friction as a function of velocity

FCoulomb : Coulomb friction including friction from prestressed
components

S : Magnitude of Stribeck effect (stick-slip factor):

S =
Fstatic − FCoulomb

FCoulomb

Vslip : Critical velocity for Stribeck effect

sgn(V) : The direction of movement (±1)

-

6

Friction

V

FStatic = (1 + S)FCoulomb

FCoulomb

Vslip

6
?

6
-��

6
?

?

-

R

I

Figure 6.10: Modified Stribeck friction including hysteresis

6-16 Modeling of Joints Fedem 8.0 Theory Guide

6

6.5.4 Total friction

The total friction model is a function resulting from the combination of the
three components described above:

Ftotal = Fviscous +
[
F0 + µCoulomb Fe

(
1 + Se

−(V
Vslip

)2
)]

sgn(V) (6.41)

6.5.5 Equivalent load in revolute joint

Friction in revolute joints depends on bearing design and joint loads. The
revolute joint transmits the forces Fx, Fy, and Fz and the bending moments
Mx and My. All these forces and moments are carried by the joint bearings.
The first step is to calculate the axial and radial bearing load based on these
joint forces and moments.

The revolute joint can be designed and modeled in many ways. In some
cases the joint has only one bearing. The bending capacity is then calculated
by the bearing constant a. This is a standard constant given in bearing
catalogs. If the joint has two bearings as shown in Figure 6.11, the joint can
also be modeled by using two separate revolute joints, one at each bearing.
The next step is to calculate the equivalent bearing load as a function of axial
and radial bearing load and bearing geometry. Different types of bearings are

Figure 6.11: Revolute joint

Fedem 8.0 Theory Guide Modeling of Joints 6-17

designed to carry either radial or axial load or a combination of these loads.
The equivalent load is then calculated as follows:

Bearing 1: Frx1 =
Fx
2
− My

a

Fry1 =
Fy
2
− Mx

a

Fr1 =
√
F 2
rx1 + F 2

ry1 (6.42)

Bearing 2: Frx2 =
Fx
2

+
My

a

Fry2 =
Fy
2

+
Mx

a

Fr2 =
√
F 2
rx2 + F 2

ry2 (6.43)

Radial bearing load: Fr = Fr1 + Fr2 (6.44)

Axial bearing load: Fa = Fz (6.45)

Equivalent bearing load: Fe = Fr + FaY (6.46)

where Y is a constant depending on bearing type and geometry, and is given
in the bearing catalogs. The friction force is calculated as a function of the
equivalent bearing load and the angular velocity. The friction torque in the
joint is calculated by multiplying the friction force by the bearing radius R.

A simplified friction representation in revolute joints, where the effects of
the bending moments and the axial load are ignored can also be used. The
coefficients a and Y are then not needed and the equivalent normal load given
by equation (6.46), reduces to

Fe =
√
F 2
x + F 2

y (6.47)

6.5.6 Equivalent load in ball and free joints

Ball and free joints can both be assigned friction properties to one of its three
rotational DOFs. The equivalent normal load is then given by equation (6.47),
where the indices x and y now represent the two local joint directions that are
orthogonal to the local axis of the chosen friction DOF. The actual friction
torque is then calculated in the same way as for a revolute joint, based on a
specified ball radius R and the angular velocity in the chosen friction DOF.

6-18 Modeling of Joints Fedem 8.0 Theory Guide

6

For free joints, friction can also be assigned to a translational DOF instead
of a rotational DOF. The equivalent normal load is then

Fe =


Fe1 =

√
F 2
y + F 2

z for friction in the Tx DOF

Fe2 =
√
F 2
z + F 2

x for friction in the Ty DOF

Fe3 =
√
F 2
x + F 2

y for friction in the Tz DOF

(6.48)

where Fx, Fy and Fz are the joint forces in its local directions. The actual
friction force is then calculated as a function of Fe and the linear velocity in
the chosen friction direction.

6.5.7 Equivalent load in prismatic joint

The friction in a prismatic joint depends on forces normal to the sliding axis
(z-axis) and forces caused by torque around the z-axis. The joint rotation
around the z-axis is fixed. This is usually accomplished by means of a sliding
key or similar mechanism (see Figure 6.12).

The friction coefficient in the locking device can in some cases be much
higher than in the linear guidance. This linear bearing is often made of
low-friction rolling elements. Forces in the locking device and normal load in
the guidance are therefore separated and can be weighted by the factor Y .

Normal Force: FN =

√
F 2
y + (Fx −

Mz

R
)2 (6.49)

Force in locking device: FM =
Mz

R
(6.50)

Figure 6.12: Prismatic joint

Fedem 8.0 Theory Guide Modeling of Joints 6-19

Here (see Figure 6.12), Fy and Fx are joint forces in the y and z direction, Mz

is the torque around the sliding z-axis, and R is the radius or distance to the
locking device. The equivalent load is then given by

Fe = FN + FMY (6.51)

A simplified friction representation in prismatic joints, where the effects of
the locking device is ignored can also be used. The coefficients R and Y are
then not needed and the equivalent normal load, equation (6.51), reduces to
Fe3 of equation (6.48).

The actual friction force in the prismatic joint is calculated as a function of
the equivalent normal load and the linear velocity of the slider DOF.

6.5.8 Equivalent load in cam joint

The equivalent load in a cam joint is the force between the cam and the
follower in the normal (x) direction. No effect from any translation in the
y-direction is accounted for. The equivalent force Fe is thus equal to the force
of the contact spring in the x-direction, and the actual friction force is
calculated similarly as for the prismatic joint.

6-20 Modeling of Joints Fedem 8.0 Theory Guide

7

Chapter 7 Dynamics Simulation

7.1 Dynamics equation on incremental form

The equation of dynamic equilibrium at time t may be written

R (t, r, ṙ, r̈) = 0 (7.1)

or

FI (t, r, ṙ, r̈) + FD (t, r, ṙ, r̈) + FS (t, r, ṙ, r̈) − Q (t, r, ṙ, r̈) = 0 (7.2)

where

FI represents inertia forces,

FD represents damping forces

FS represents internal elastic forces

Q represents input loads (forces and torques) and gravitational forces

Equation (7.2) is integrated in time with a time increment length of h. At
time tk, this equation of equilibrium may be written

FI
k + FD

k + FS
k = Qk (7.3)

Since equation (7.3) has to be satisfied at all times, we can subtract this
equation from the same equation at time tk+1 = tk + h to produce the
equation of motion on incremental form, as follows[

FI
k+1 − FI

k

]
+
[
FD
k+1 − FD

k

]
+
[
FS
k+1 − FS

k

]
= Qk+1 −Qk (7.4)

or
∆FI

k + ∆FD
k + ∆FS

k = ∆Qk (7.5)

In the following, the different terms of equation (7.5) are expanded.

The inertia, damping and stiffness relationships are estimated by a linear
approximation around the starting position for each time increment.
Incremental system matrices are then generated for that configuration.
Equilibrium iterations are next used to reduce the error in this approximation.
The exact incremental system matrices, called tangent matrices, are functions
of the unknown displacement increments and cannot be generated in advance.

Fedem 8.0 Theory Guide Dynamics Simulation 7-1

The incremental inertia forces from equation (7.5) may be written

∆FI
k = FI

k+1 − FI
k = Mk∆r̈k (7.6)

where Mk is the system mass matrix at the beginning of time increment k,
and ∆r̈k = r̈k+1 − r̈k represents the change in acceleration during that time
increment. The system mass matrix may be constant or a function of the
displacement r, depending on the element mass representation used. The
element mass matrices are constant, but undergo a geometric transformation
before they are added into the system matrix. If a lumped mass
representation is chosen, the element mass matrix is diagonal and the
geometric transformations have no effect. Then the system mass matrix will
be diagonal and constant during integration.

The incremental damping forces from equation (7.5) may be written

∆FD
k = FD

k+1 − FD
k = Ck∆ṙk (7.7)

where Ck is the system damping matrix at the beginning of time increment k,
and ∆ṙk = ṙk+1 − ṙk represents the change in velocity during that time
increment. The system damping matrix may be constant or a function of the
displacement r. If the damping matrix is diagonal, the damping matrix will
not be affected by the geometric transformation and remains constant.

The incremental elastic forces from equation (7.5) may be written

∆FS
k = FS

k+1 − FS
k = Kk∆rk (7.8)

where Kk is the system stiffness matrix at the beginning of time increment k,
and ∆r = rk+1 − rk represents the associated displacement increment. The
system stiffness matrix is in general a function of the displacement vector.

The incremental dynamic equation of motion (7.5) can now be written on
the linearized form

Mk∆r̈k + Ck∆ṙk + Kk∆rk = ∆Qk (7.9)

The matrices Mk, Ck and Kk may be recalculated for each time increment
and iteration of the solution process. Solving equation (7.9) using a time
integration algorithm, such as the Newmark method, gives ∆rk,∆ṙk, and
∆r̈k. Therefore, the total solution at the end of the increment is

rk+1 = rk + ∆rk

ṙk+1 = ṙk + ∆ṙk

r̈k+1 = r̈k + ∆r̈k

(7.10)

7-2 Dynamics Simulation Fedem 8.0 Theory Guide

7

This solution may be used to calculate the forces FI
k+1, FD

k+1 and FS
k+1.

However, due to the linear approximation there will be unbalanced forces at
the end of the increment, given by

R̂k+1 = Qk+1 −
[
FI
k+1 + FD

k+1 + FS
k+1

]
(7.11)

These residual forces may be added to the load increment for the next step

∆Q̂k = ∆Qk + R̂k = Qk+1 −
[
FI
k + FD

k + FS
k

]
(7.12)

Replacing ∆Qk by ∆Q̂k, equation (7.9) may then be written

Mk∆r̈k + Ck∆ṙk + Kk∆rk = Qk+1 −
[
FI
k + FD

k + FS
k

]
(7.13)

7.2 Newmark time integration

The Newmark β-family of algorithms is used for time integration in Fedem.
The basis for the Newmark method is the following update scheme

rk+1 = rk + hṙk +

(
1

2
− β

)
h2r̈k + βh2r̈k+1 (7.14)

ṙk+1 = ṙk + (1− γ)hr̈k + γhr̈k+1 (7.15)

where β and γ are integration parameters (see Section 7.2.1) and h is the time
increment length. These equations may be rewritten into the incremental
forms

rk+1 = rk + ∆rk where ∆rk = hṙk +
h2

2
r̈k + βh2∆r̈k (7.16)

ṙk+1 = ṙk + ∆ṙk where ∆ṙk = hr̈k + γh∆r̈k (7.17)

The increment in velocity and acceleration can now be expressed as
functions of the displacement increment and known quantities at time tk.
With ∆r̈k = r̈k+1 − r̈k, equation (7.16) produces

r̈k+1 = r̈k + ∆r̈k = r̈k +
1

βh2
∆rk −

1

βh
ṙk −

1

2β
r̈k

=
1

βh2
∆rk − ak

(7.18)

where

ak =
1

βh
ṙk +

(
1

2β
− 1

)
r̈k (7.19)

Fedem 8.0 Theory Guide Dynamics Simulation 7-3

Combining equation (7.17) with equation (7.18) yields

ṙk+1 = ṙk + ∆ṙk = ṙk +
γ

βh
∆rk −

γ

β
ṙk −

(
γh

2β
− h
)

r̈k

=
γ

βh
∆rk − dk

(7.20)

where

dk =

(
γ

β
− 1

)
ṙk +

(
γ

2β
− 1

)
hr̈k (7.21)

By inserting equations (7.18) and (7.20) into equation (7.13), we now get

Nk∆rk = R̂k (7.22)

where the Newton matrix is

Nk = Kk +
γ

βh
Ck +

1

βh2
Mk (7.23)

and the right-hand-side vector is

R̂k = Qk+1 −
[
FI
k + FD

k + FS
k

]
+ Mk [ak + r̈k] + Ck [dk + ṙk] (7.24)

The evaluation of the system Newton matrix, Nk, is covered by Section 7.6,
whereas the external loading, Qk+1, and the internal inertia, damping, and
elastic forces, FI

k, FD
k and FS

k, are covered by Section 7.7.

7.2.1 Stability and accuracy

The integration parameters γ and β are selected for controlling the stability,
accuracy and efficiency of the integration process. For the linear case, the
method is unconditionally stable for

γ ≥ 1

2
and β ≥ 1

4

(
γ +

1

2

)2

(7.25)

For smaller β-values, the method is only conditionally stable. The stability
criterion is

hcr =
T

2π

(
1

4

(
γ +

1

2

)2

− β

)− 1
2

(7.26)

where hcr is the critical time increment size and T is the period for the highest
frequency in the model.

7-4 Dynamics Simulation Fedem 8.0 Theory Guide

7

The parameter γ may be selected to introduce artificial damping into the
integration process. γ > 1

2 gives positive artificial damping; in other words,
the amplitude will decay with increasing k. γ < 1

2 gives negative artificial
damping, i.e., the amplitude will increase with increasing k. γ = 1

2 gives no
artificial damping. Unfortunately, numerical (algorithmic) damping can not be
introduced without loss off accuracy, and using a value of γ 6= 1

2 will make the
algorithm only first order accurate. Consequently, γ = 1

2 is often the selection.
In this case, the Newmark β-family includes the following methods

β = 0 The second central difference method with hcr = 0.318T

β = 1
12 Fox-Goodwins method with hcr = 0.389T

β = 1
6 Linear acceleration with hcr = 0.551T

β = 1
4 Constant average acceleration (trapezoid method), which is

unconditionally stable for linear systems

Fedem is using γ = 1
2 and β = 1

4 for its Newmark integration algorithm.
This constitutes a second order accurate integration with no numerical
damping for any frequencies. Because of the lack of numerical damping, we
must include structural damping to the model to obtain stable integration
with the Newmark algorithm. We will usually include (mainly) stiffness
proportional damping in order to introduce dissipation of high-frequency
modes, see Section 7.5.

7.3 Newton–Raphson iteration

Equation (7.13) is an approximation of the equilibrium equation at time tk+1.
To achieve equilibrium at the end of the increment, so-called Newton–Raphson
iterations are used to minimize the error from the solution of this equation.

An iteration is formally conducted by replacing the right hand side of
equation (7.13) by the residual from the previous iteration, i−1R̂k+1, and then
solving for the correction δrk to ∆rk from

iMk
iδr̈k + iCk

iδṙk + iKk
iδrk = i−1Qk+1

−
[
i−1FI

k+1 + i−1FD
k+1 + i−1FS

k+1

] (7.27)

The superindex to the left of the symbols indicates the iteration number. The
displacement, velocity and acceleration increments are then corrected from

i∆rk = i−1∆rk + iδrk
i∆ṙk = i−1∆ṙk + iδṙk
i∆r̈k = i−1∆r̈k + iδr̈k

(7.28)

Fedem 8.0 Theory Guide Dynamics Simulation 7-5

The total displacement, velocity and acceleration vectors are updated through

irk+1 = i−1rk+1 + iδrk
iṙk+1 = i−1ṙk+1 + iδṙk
ir̈k+1 = i−1r̈k+1 + iδr̈k

(7.29)

The improved displacement increment, given by equation (7.28)1, is next
inserted into equations (7.18) and (7.20), respectively, yielding

ir̈k+1 =
1

βh2
i∆rk − ak =

1

βh2

[
i−1∆rk + iδrk

]
− ak (7.30)

iṙk+1 =
γ

βh
i∆rk − dk =

γ

βh

[
i−1∆rk + iδrk

]
− dk (7.31)

From this it follows that the iterative acceleration and velocity corrections are
given by, respectively

iδr̈k =
1

βh2
iδrk and iδṙk =

γ

βh
iδrk (7.32)

Combining equation (7.32) with equation (7.27) yields

iNk
iδrk = i−1R̂k (7.33)

with
iNk = iKk +

γ

βh
iCk +

1

βh2
iMk (7.34)

and
i−1R̂k = i−1Qk+1 −

[
i−1FI

k+1 + i−1FD
k+1 + i−1FS

k+1

]
(7.35)

After updating the solution state through the equations (7.28) and (7.29),
the internal forces iFI

k+1, iFD
k+1 and iFS

k+1 can be calculated from the
equations (7.6)–(7.8) and substituted into equation (7.27) to solve for the
correction i+1δrk of the next iteration, and so on.

If the matrices Mk, Ck and Kk are updated in each iteration, this
iteration process is called Newton–Raphson iteration. If they all are left
constant during the iterations, or only updated after some iterations, the
process is called modified Newton–Raphson iteration. The coefficient matrix
of the equation system (7.33) is then unchanged for those iterations and new
triangularizations are avoided. The iterations are repeated until the chosen
convergence test is satisfied (refer to Section 7.3.1).

7-6 Dynamics Simulation Fedem 8.0 Theory Guide

7

7.3.1 Convergence criteria

Some criteria for terminating the equilibrium iterations governed by
equations (7.27)–(7.29), must be established. They are typically based on
some norms of the vector quantities involved. When computing the norms, we
have the problem of dealing with different units. There are rotational and
translational DOFs (typically measured in radians and meters), as well as
generalized DOFs associated with the component modes.

Changing the modeling units of length and translation from [m] to [mm]
changes the size of the translations with 3 orders of magnitude, whereas the
rotations remain the same. Such a change of units should not affect the
relative contribution of rotation and translations to the norm of a
displacement vector.

Scaled vector norms

In order to make the vector norms unit independent, we choose to use
rotations as the “base” displacement quantity since they are always measured
in radians. With a rigid rotation of unit magnitude as guiding displacement,
an appropriate scaling of the translations is then assumed to be 1

Lmodel
, where

Lmodel is the largest dimension of the model itself.

Based on this, we define the scaled vector norm as

‖v‖scaled =

√∑
i(wivi)

2∑
i w

2
i

(7.36)

where


wi = 1 if i is rotational DOF
wi = 1

Lmodel
if i is translational DOF

wi = 1 if i is generalized DOF

Convergence criterias are now defined as

‖v‖scaled ≤ εtol (7.37)

where the vector v can be one of the following

Fedem 8.0 Theory Guide Dynamics Simulation 7-7

iδrk displacement correction defined by equations (7.27) and (7.33)
iδṙk velocity correction defined by equations (7.27) and (7.32)1

iδr̈k acceleration correction defined by equations (7.27) and (7.32)

iR̂k residual vector (unbalanced forces) defined by equations (7.27)
and (7.35)

The scaling factors are inverted for the force residual vector.

Remark: Velocity and acceleration corrections are computed from the displacement
correction as time step dependent scalings proportional to 1

h
and 1

h2 respectively,
as given by equation (7.32). For small time steps, any noise in the displacement
corrections gets greatly magnified in the velocity and acceleration terms, and can
lead to convergence problems if the convergence criterion involves testing on the
velocity and acceleration corrections.

DOF type selective infinite norms

The infinite norm of a vector is defined as

‖v‖∞ = lim
n→∞

n

√∑
i

|vni | = max
∀i
|vi| (7.38)

Because of the different DOF types (rotation, translation and component
modes), we define three different infinite norms of a mixed vector v as

‖v‖∞,tran = max |vi| : ∀ i being a translational DOF

‖v‖∞,rot = max |vi| : ∀ i being a rotational DOF

‖v‖∞,gen = max |vi| : ∀ i being a component mode DOF
(7.39)

Convergence criterias based on these norms are now defined as

‖v‖∞,tran ≤ εtol, ‖v‖∞,rot ≤ εtol, ‖v‖∞,gen ≤ εtol (7.40)

where v can be the correction to the displacements iδrk, velocity iδṙk,
acceleration iδr̈k, as well as the residual vector iR̂k.

1For the scaled vector norm of the velocity correction we also have the option of “relaxing”
the convergence criterion when the overall velocity of the mechanism is large, i.e.,

εtol = εabs + εvel ‖v̇‖

7-8 Dynamics Simulation Fedem 8.0 Theory Guide

7

Energy norms

The product of residual vector iR̂k and displacement correction iδrk form an
incremental energy term. The advantage of using this quantity in convergence
testing is the automatic same unit of energy for all DOFs regardless of
translation/force, rotation/torque, or generalized DOF/generalize force.

We define energy norm analogous to the infinite and scaled vector norms
respectively, as the max DOF energy and average energy

Max DOF energy: Emax = max
j=1,n

∣∣∣iδrkjiR̂kj∣∣∣ (7.41)

Average energy: Eavg =
1

n

∑
j=1,n

∣∣∣iδrkjiR̂kj∣∣∣ (7.42)

Remark: Structures close to a buckling state will often be close to force equilib-
rium (low residual norm), while the displacements are largely undetermined (high
displacement correction norm). Similarly, structures with very stiff members of-
ten are close to the correct position (low displacement correction norm), whereas
the unbalanced forces are high (high residual norm). Both of these cases can lead
to convergence problems when the convergence criterion is based on displacements
and/or force equilibrium. In these cases the energy norms often give a more “bal-
anced” picture and can improve stability in passing problem areas in the dynamics
simulation.

7.4 Newmark integration with numerical damping

7.4.1 The Hilber–Hughes–Taylor method

The α-method by Hilber, Hughes and Taylor [8] circumvents the problem of
not being able to introduce numerical damping without a loss of accuracy as
in the traditional Newmark algorithm. This is achieved by modifying the
equilibrium equation (7.3), as follows

FI
k+1 +(1+α)FD

k+1−αFD
k +(1+α)FS

k+1−αFS
k = (1+α)Qk+1−αQk (7.43)

where α adjusts the amount of numerical damping.

The HHT-α method gives efficient high-frequency dissipation and is
unconditionally stable for parameters in the range

α ∈ [−1

3
, 0], γ =

1

2
(1− 2α), and β =

1

4
(1− α)2 (7.44)

Fedem is using α = −0.1, which gives γ = 0.6 and β = 0.3025.

Fedem 8.0 Theory Guide Dynamics Simulation 7-9

Remark: For simulations involving high-speed rotations, the α-method can give less
accurate estimates for the rigid body rotational velocities than the standard New-
mark method. The latter method might give better results and allow larger time in-
crements in such cases. Note, however, that the standard Newmark method requires
more structural damping than the α-method. With the use of stiffness proportional
damping, no artificial damping against the rigid body rotation is introduced.

Equation (7.43) can also be expressed as

FI
k+1 + (1 + α)FD

k+1 + (1 + α)FS
k+1 = (1 + α)Qk+1 − αFI

actual (7.45)

where FI
actual represents the actual inertia force at increment k, computed

from the equilibrium equation (7.3), i.e.

FI
actual = Qk − FD

k − FS
k (7.46)

This modified equilibrium equation is integrated by the standard Newmark
method. Hence, the finite difference expressions (7.14)–(7.21) are retained.

By inserting the internal force linearizations from equations (7.6)–(7.8)
into equation (7.45), we obtain

FI
k + Mk∆r̈k + (1 + α)

(
FD
k + Ck∆ṙk

)
+ (1 + α)

(
FS
k + Kk∆rk

)
= (1 + α) Qk+1 − αFI

actual

(7.47)

or
Mk∆r̈k + (1 + α) Ck∆ṙk + (1 + α) Kk∆rk

= (1 + α)
(
Qk+1 − FD

k − FS
k

)
− FI

k − αFI
actual

(7.48)

Inserting the Newmark incremental acceleration and velocity expressions from
equations (7.18) and (7.20), resepctively, into equation (7.48) now yields

Mk

(
1

βh2
∆rk − ak − r̈k

)
+

(1 + α)Ck

(
γ

βh
∆rk − dk − ṙk

)
+

(1 + α)Kk∆rk = (1 + α)
(
Qk+1 − FD

k − FS
k

)
− FI

k − αFI
actual

(7.49)

which after rearranging the known quantities on the right hand side becomes

Nk∆rk = R̂k (7.50)

with

Nk =
1

βh2
Mk +

(1 + α)γ

βh
Ck + (1 + α)Kk (7.51)

7-10 Dynamics Simulation Fedem 8.0 Theory Guide

7

and
R̂k = (1 + α)

(
Qk+1 + Ck(dk + ṙk)− FD

k − FS
k

)
+ Mk(ak + r̈k)− FI

k − αFI
actual

(7.52)

If we assume that the inertia- and damping forces are linear with respect
to the total acceleration and velocity, respectively, we have that FD

k = Ckṙk
and FI

k = Mkr̈k, and equation (7.52) reduces to the following

R̂k = (1 + α)
(
Qk+1 + Ckdk − FS

k

)
+ Mkak − αFI

actual (7.53)

The equation (7.53) is used as the default force predictor in Fedem, optionally
also replacing FI

actual by FI
k. The linear assumption on the inertia- and

damping- forces is a simplification that should not matter much if the mass-
and damping characteritiscs are relatively constant during the simulation
time. However, for systems consisting of large bodies moving relative to each
other, like in contact problems, or systems with significant nonlinear damping,
like hydrodynamic drag, etc., it is worth considering using the full expression,
equation (7.52).

Remark: A small error in the predictor force usually has no significance in a non-
linear simulation with Newton–Raphson iterations, since then it will iterate towards
the correct solution in any case. But if the predictor force is too far off, there is a
risk of divergence, or in the worst case, convergence towards an incorrect solution.

For a linear system, the state at time tk+1 given by ∆rk, ∆ṙk and ∆r̈k,
and the associated inertia, damping and elastic forces forces FI

k+1, FD
k+1 and

FS
k+1, respectively, will satisfy the equilibrium equation (7.45). However, for

nonlinear systems the increments ∆rk, ∆ṙk and ∆r̈k will in general not satisfy
equation (7.45). In order to ensure dynamic equilibrium before advancing to
the next increment, the dynamic residual seeks to be minimized through a
similar Newton–Raphson procedure as described in Section 7.3. Thus, in each
iteration we have to solve the linearized system of equations

iNk
i∆k = i−1R̂k (7.54)

where the Newton matrix iNk is the same as in equation (7.51), and the

right-hand-side vector i−1R̂k equals the residual from the previous iteration

i−1R̂k = (1 + α)
(
i−1Qk+1 − i−1FD

k+1 − i−1FS
k+1

)
− i−1FI

k+1 − αFI
actual (7.55)

Fedem 8.0 Theory Guide Dynamics Simulation 7-11

7.4.2 Numerical characteristics of the HHT-α method

The Hilber–Hughes–Taylor α-method introduces numerical damping for the
higher frequencies, which is very beneficial for the numerical stability of the
time integration. However, “high frequency” is relative to the time step size
being used. When using a time step with a sampling rate of 300 Hz, 50-60 Hz
is a fairly high frequency compared to the sampling frequency, and thus has a
fairly significant numerical damping. With a time step of 800 Hz, the
numerical damping at 50-60 Hz is much smaller. The numerical properties of
the HHT-α method is described in more detail in [13].

The damping ratio of the HHT-α method is a function of the parameter
ωh, see Figure 7.1. Reduction in the time step size, h, will move the damping
ratio up in the frequency range with the inverse factor of the time step
reduction, e.g., reducing the time step size with a factor of 0.1 will move the
numerical damping up in the frequency range with a factor of 10.

The frequency of the response has an error which also is dependent on the
frequency parameter ωh. This is shown in Figure 7.2. Note, however, that the
error is largely independent of the amount of numerical damping introduced
through the parameter α. In order to capture the frequency with sufficient
accuracy we use a sufficiently small time step.

Remark: As a rule of thumb, one should use a time step of one tenth of the
highest response frequency one wants capture with a reasonable degree of accuracy.

7.4.3 The generalized-α method

The generalized-α method by Chung and Hulbert [14] seeks to introduce high
frequency dissipation into the numerical solution by interpolating the inertia
forces between time increments k and k + 1 using a factor αm, and
interpolating the elastic, damping and external forces using another factor αf .
The dynamic equilibrium equation (7.3) then takes the form

(1− αm)FI
k+1 + αmFI

k +

(1− αf)FD
k+1 + αfF

D
k +

(1− αf)FS
k+1 + αfF

S
k = (1− αf)Qk+1 + αfQk

(7.56)

The Newmark integration of equation (7.56) is a second order accurate
algorithm provided that

γ =
1

2
− αm + αf (7.57)

7-12 Dynamics Simulation Fedem 8.0 Theory Guide

7

Frequency parameter, ωh

R
el
a
ti
ve

d
am

p
in
g
ra
ti
o

0.0 0.5 1.0 1.5 2.0
−0.005

0.000

0.005

0.010

0.015

0.020

0.025

HHT (α = 0.10)

HHT (α = 0.05)

Newmark (α = 0.0)

Figure 7.1: Numerical damping ratio for HHT and Newmark algorithm.

Frequency parameter, ωh

R
el
a
ti
ve

p
er
io
d
ic
it
y
er
ro
r

0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

HHT (α = 0.10)

HHT (α = 0.05)

Newmark (α = 0.0)

Figure 7.2: Relative periodicity error for HHT and Newmark algorithm.

Fedem 8.0 Theory Guide Dynamics Simulation 7-13

This algorithm is unconditionally stable if the following conditions are met

αm ≤ αf ≤
1

2
and β ≥ 1

4
+

1

2
(αf − αm) (7.58)

This region of stability is depicted by the shaded area in Figure 7.3, which is
bounded by the two lines λ∞1,2 = −1 corresponding to αm ≤ αf , and λ∞3 = −1

corresponding to αf ≤ 1
2 . According to [14], the high frequency modes

(relative to the time increment length h) will be damped out if we choose

β =
1

2
(1− αm + αf)2 (7.59)

Inserting the internal force linearizations from equations (7.6)–(7.8) into
equation (7.56) and using Qk+1 = Qk + ∆Qk, we obtain the generalized-α

-

6

αm

αf

−1 − 1
2

1
2 1

−1

− 1
2

1
2

1

�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

��

�����������������������

r

rr
r

λ∞1,2 = −1

λ∞3 = −1

λ∞3 = λ∞1,2

� HHT-α
?

Generalized-α

Figure 7.3: Classification of the generalized-α method in the αm − αf space.
From [14].

7-14 Dynamics Simulation Fedem 8.0 Theory Guide

7

equation on incremental form

(1− αm)Mk∆r̈k + FI
k +

(1− αf)Ck∆ṙk + FD
k +

(1− αf)Kk∆rk + FS
k = (1− αf)∆Qk + Qk

(7.60)

or, by collecting all known quantities of time increment k on the right hand
side

(1− αm)Mk∆r̈k + (1− αf)Ck∆ṙk + (1− αf)Kk∆rk

= (1− αf)∆Qk −
(
FI
k + FD

k + FS
k −Qk

) (7.61)

The last term on the right hand side of equation (7.61) can be recognized as
the force residual of time increment k, and as such can be omitted since this
should be equal to zero if convergence has been achieved before advancing to
time increment k + 1.

Inserting the Newmark incremental acceleration and velocity expressions
from equations (7.18) and (7.20) into equation (7.61) yields

(1− αm)Mk

(
1

βh2
∆rk − ak − r̈k

)
+

(1− αf)Ck

(
γ

βh
∆rk − dk − ṙk

)
+

(1− αf)Kk∆rk = (1− αf)∆Qk −
(
FI
k + FD

k + FS
k −Qk

)
(7.62)

which after rearranging the known quantities on the right hand side becomes

Nk∆rk = R̂k (7.63)

with

Nk =
1− αm
βh2

Mk +
(1− αf)γ

βh
Ck + (1− αf)Kk (7.64)

and
R̂k = (1− αf)∆Qk −

(
FI
k + FD

k + FS
k −Qk

)
+ (1− αm)Mk(ak + r̈k) + (1− αf)Ck(dk + ṙk)

(7.65)

For a linear system, the state at time tk+1 given by ∆rk, ∆ṙk and ∆r̈k,
and the associated inertia, damping and elastic forces forces FI

k+1, FD
k+1 and

FS
k+1, respectively, will satisfy the equilibrium equation (7.56). For nonlinear

systems, the increments ∆rk, ∆ṙk and ∆r̈k will in general not satisfy
equation (7.56). In order to ensure dynamic equilibrium before advancing to

Fedem 8.0 Theory Guide Dynamics Simulation 7-15

the next time increment, the dynamic residual seeks to be minimized through
a similar Newton–Raphson procedure as described in Section 7.3. Thus, in
each iteration we have to solve the linearized system of equations

iNk
iδrk = i−1Rα

k (7.66)

where the Newton matrix iNk is the same as in equation (7.64), and the
right-hand-side vector i−1Rα

k equals

i−1Rα
k = (1− αf) i−1Qk+1 + αfQk

− (1− αm) i−1FI
k+1 − αmFI

k

− (1− αf) i−1FD
k+1 − αfFD

k

− (1− αf) i−1FS
k+1 − αfFS

k

(7.67)

7.5 Structural damping

The reduced superelement damping matrix is not developed in Fedem.
Instead, proportional damping is used. If we assume that the damping force in
a superelement is proportional to the velocity of each mass point, we have

c = α1m (7.68)

where α1 is a constant. Similarly, if we assume the damping force is
proportional to the strain velocity in each point, we have

c = α2k (7.69)

where α2 is another constant. The combination of these two assumptions
produces the damping matrix of Rayleigh-damping or proportional damping

c = α1m + α2k (7.70)

The damping ratio for the natural frequencies can now be calculated from

λi =
1

2

(
α1

ωi
+ α2ωi

)
(7.71)

where α1 damps out lower vibration modes while α2 damps out higher modes.
If the damping ratios λi for two vibration modes are selected, the
corresponding constants of proportionality, α1 and α2 may be calculated from

α1 =
2ω1ω2

ω2
2 − ω2

1

(λ1ω2 − λ2ω1)

α2 =
2 (ω2λ2 − ω1λ1)

ω2
2 − ω2

1

(7.72)

7-16 Dynamics Simulation Fedem 8.0 Theory Guide

7

where ω1 and ω2 are the circle frequencies and λ1 and λ2 are the damping
ratios for the selected vibration modes, see Figure 7.4.

When using component modes (see Section 3.2), the reduced superelement
matrices are partitioned into sub-matrices associated with the retained nodal
DOFs and component modes, respectively. It is then possible to assign
individual Rayleigh damping factors for each component mode. In this case,
exploiting that k12 = kT21 = 0 and m12 = mT

21, equation (7.70) reads[
c11 c12

c21 c22

]
=

[
α1m11 (αmm21)

T

αmm21 αmm22

]
+

[
α2k11 0

0 αkk22

]
(7.73)

where αm = dαmic and αk = dαkic are diagonal matrices containing the
component mode damping factors. Note that m22 and k22 both are diagonal
matrices, see Section 3.2.3.

-

6

0.0 10 20 30 40 50 60 70 80 90
0.0

0.1

0.2

0.3

0.40

0.5

0.6

Circle frequency

ω

D
am

p
in
g
ra
ti
o

λ

Asymptote: λ = 1
2α2ω

Asymptote: ω = 0

λ =
1

2

(α1

ω
+ α2ω

)

e e

ω1 ω2

λ1

λ2

Figure 7.4: A typical relationship between damping and natural frequency aris-
ing from the specification of damping ratio at the frequencies. (α1 = 1.5 and
α2 = 0.004).

Fedem 8.0 Theory Guide Dynamics Simulation 7-17

7.6 Evaluation of the Newton matrix

The Newton matrix is a function of the integration parameters γ and β and of
the time increment size size h, see equation (7.23). In Section 3.2, mass and
stiffness matrices are developed for each of the substructures and reduced to
superelement matrices by CMS-reduction techniques. The tangent stiffness
matrix of each substructure is then established at the current configuration
through the co-rotational formulation outlined in Chapter 4.

A superelement Newton matrix can now be calculated from the following
relation (refer to equations (7.23) and (7.70))

ni = ki +
γ

βh
(α1mi + α2ki) +

1

βh2
mi (7.74)

where

ni reduced superelement Newton matrix

ki reduced superelement stiffness matrix

mi reduced superelement mass matrix

Each time the integration algorithm requires a new Newton matrix (refer
to equations (7.22) and (7.33)), the superelement Newton matrices are
transformed to the actual directions of the system level DOFs by

n̄i = TT
SEiniTSEi (7.75)

resulting in the transformed superelement Newton matrix, n̄i .

The superelement Newton matrices are added into the incremental Newton
matrix at system level as indicated by

Nk =
∑
i

aTi n̄iai (7.76)

where ai are incidence matrices that represent superelement topology at
system level.

The stiffness for a spring may be a constant or, in the nonlinear case, a
variable that is dependent on the spring deflection. For axial springs, the
stiffness is transformed to the directions of the connected supernodes and then
added directly to the Newton system matrix. For joint springs, stiffness is
added to the diagonal of the involved DOF of the system’s Newton matrix.

The damping coefficient of a damper may be a constant, or in the
nonlinear case a variable that is dependent on the damper velocity. For the
Newton matrix, the damping coefficient must be modified by the factor γ

βh

7-18 Dynamics Simulation Fedem 8.0 Theory Guide

7

(see equations (7.23) and (7.34)). For axial dampers, the modified damping
coefficient is transformed to the actual directions for the connected
supernodes and then added to the Newton system matrix. For joint dampers,
the modified damping coefficients are added to the diagonal of the involved
DOF of the system’s Newton matrix.

Additional masses may be regarded as constants during simulation. For
the Newton matrix, additional masses must be modified by the factor 1

βh2

(refer to equations (7.23) and (7.34)). The modified additional masses are
added to the diagonal elements for the specified DOFs of the Newton matrix.

7.7 Evaluation of the force vector

The force vector must be evaluated for each time increment and iteration
(refer to equations (7.22) and (7.33)).

7.7.1 External forces

The external forces at time increment k + 1, Qk+1 consist of the following
contributions:

� Superelement gravitational forces

� Concentrated external forces in supernodes

� Gravitational forces from additional masses

The gravitational forces are transformed to actual directions of the DOFs
at system level by means of the superelement transformation matrix TSEi

ḡi = TT
SEigi (7.77)

The transformed superelement’s gravitational forces are then added into the
force vector by

Qk+1 = Qk+1 +
∑
i

aTi ḡi (7.78)

Direction and magnitude for specified concentrated loads are calculated for
the actual position of the mechanism, then transformed to the supernode
direction and added into the system vector Qk+1. For loading on specified
DOFs at system level, the magnitude at that position is added directly into
Qk+1.

For additional masses added to translational DOFs, a gravitational force is
calculated by multiplying the component of the gravitational vector along the

Fedem 8.0 Theory Guide Dynamics Simulation 7-19

actual DOF by the specified mass. These gravitational forces are then added
to Qk+1 for the DOFs in question.

7.7.2 Stiffness forces

The superelement stiffness forces are transformed to the actual directions of
the DOFs for superelement i, i.e.

S̄i = TT
SEiSi (7.79)

(see equation (7.77)) and formally added into the force vector by

FS =
∑
i

aTi S̄i (7.80)

(see equation (7.78)).

In general, a spring element may have a stress-free length that is a function
of time, and it may also have a spring stiffness which is a function of the
spring deflection (see Section 5.1). At a given configuration of the mechanism,
the specified stress-free length of the spring, l0, is evaluated and subtracted
from the actual spring length, l, to give the actual spring deflection

δ = l(r)− l0(t) (7.81)

In a typical nonlinear case, the spring force is found by integrating the
stiffness over a change in the deflection. For axial springs, the evaluated
spring force is transformed to the direction of the end supernodes and added
into the force vector similar to equations (7.79) and (7.80).

For joint springs, the force (or torque) is calculated similarly to that of
axial springs; however, the force is added directly to the involved DOF of the
load vector without any further transformation.

7.7.3 Inertia and damping forces

Taking into account that

FI
k = Mkr̈k (7.82)

FD
k = Ckṙk (7.83)

the right-hand-side vector defined by equation (7.24) reduces to

∆Q̂k = Qk+1 + Ckdk + Mkak − FS
k (7.84)

7-20 Dynamics Simulation Fedem 8.0 Theory Guide

7

where ak and dk are the predicted acceleration and velocity, defined by
equations (7.19) and (7.21), respectively.

For the first iteration within each time increment, the effective inertia
forces are calculated by replacing r̈k with −ak in equation (7.82) and ṙk with
−dk in equation (7.83). To avoid assembling the system mass and damping
matrix explicitly, the corresponding superelement accelerations and velocities
are extracted from the system vectors and transformed to the local
superelement direction. The local superelement mass and damping matrices
are then multiplied by the corresponding local acceleration and velocity
vectors to produce the superelement inertia and damping forces, respectively.
These forces are then transformed to the actual supernode directions and
added into the system vector (compare with equations (7.77) and (7.78)).

In general, a damper element has a damping coefficient that is a function
of the damper velocity (see Section 5.2). For a given velocity, the damping
coefficient and associated force or torque is calculated. The force/torque is
then added directly to the involved DOF of the load vector without any
further transformation for joint dampers. For axial dampers, the force is
transformed in a similar manner as described above for the axial springs.

The inertia forces (or torques) from additional masses on specified DOFs
of the mechanism are calculated by multiplying the DOF acceleration by the
magnitude of the mass. These forces are then added to the corresponding
DOFs of the load vector.

7.7.4 Forces due to prescribed motion

Prescribed motions in a mechanism can be imposed by introducing stiff
springs with a specified stress-free length variation as a function of time, as
described in Section 5.1. This is equivalent to a penalty-enforcement of the
motion constraint, where the spring stiffness serves as the penalty parameter.

In Fedem, it is also possible of enforce the prescribed motion explicitly, by
eliminating the DOF that is prescribed from the system of equations (7.22)
and (7.33). This is usually more efficient, since the number of unknowns then
is reduced, and it may also yield a more stable solution process since we don’t
have to deal with penalty parameters. It is possible to prescribe motions in
joint DOFs or directly on triads.

For a given DOF n, we assume that the motion in terms of total
displacement relative to the initial position is a known function of time,
un = un(t). The right-hand-side vector of the equation system (7.22), given

Fedem 8.0 Theory Guide Dynamics Simulation 7-21

by equation (7.84) above, is then modified as follows

∆Q̂k = Qk+1 −Nkδn∆uk + Ckdk + Mkak − FS
k (7.85)

where ∆uk = un(tk+1)− un(tk) is the increment in the prescribed motion
from the previous time increment, k, to the next increment, k + 1, and δn is a
constant vector with the value 1 at the location corresponding to the
prescribed DOF n, and zero elsewhere. The size of the equation system (7.22)
is then reduced by 1, by removing the n’th column and row of the Newton
matrix and the right-hand-side vector, since this DOF no longer is an
unknown.

The equation system of the iterations (7.33) is modified in a similar
manner, except that there is no additional force term here since the iterative
correction on the prescribed DOF, i∆uk, by definition always is zero.

One can also use a prescribed velocity or acceleration in the same manner.
We then use the Newmark integration parameters to derive the equivalent
prescribed displacement, which then is inserted into equation (7.85). With a
prescribed velocity function vn(t), we find the equivalent displacement
increment to impose from equation (7.20) as

∆uk =
βh

γ
(vn(tk+1)− vn(tk)) + h vn(tk) +

(
1

2
− β

γ

)
h2r̈k (7.86)

Similarly, with a prescribed acceleration function an(t), we can find an
equivalent displacement from equation (7.18) as

∆uk = βh2 (an(tk+1)− an(tk)) + h ṙk +
h2

2
an(tk) (7.87)

7-22 Dynamics Simulation Fedem 8.0 Theory Guide

7

7.8 Quasi-static equilibrium

Dynamic simulation of mechanism motion should start from an equilibrium
position to avoid that unbalanced forces in the mechanism from the initial
configuration cause a false superimposed vibration in the simulation results.
This can happen when the simulation starts from both a stationary position
and a position with initial velocities and acceleration. Unbalanced forces for
the stationary position arise from gravitation forces, initially loaded springs
and initial external loading, as well as from positioning inaccuracies in the
mechanism modeling. Equilibrium for the initial positions of mechanisms with
initial velocities and accelerations also includes the unbalanced inertia and
damping forces.

The inclusion of possible inertia and damping effects in the initial
equilibrium iteration justifies the term quasi-static equilibrium iteration. Since
the initial velocities and accelerations are either zero or specified, their
correction in the inertia and damping terms on the left-hand side of the
iteration equation (7.27) cancel out. The quasi-static iteration equation
therefore reduces to

iK0
iδr0 = i−1Q0 −

[
i−1FI

0 + i−1FD
0 + i−1FS

0

]
(7.88)

Here, the subindices have been changed to 0, indicating the initial position. In
the case of prescribed motion, the first iteration is instead governed by

1K0
1δr0 = 0Q0 −

[
1K0δnun(t0) + 0FI

0 + 0FD
0 + 0FS

0

]
(7.89)

If the rigid body mechanism motions all are either constrained by
springs—as in a car suspension system—or fixed, the stiffness matrix is
nonsingular and equation (7.88) may be used to iterate for the equilibrium
position. When mechanism motion is controlled by force input, equation (7.88)
may be singular and additional boundary conditions must be introduced into
the equation to eliminate the rigid body DOFs of the mechanism. In this case,
extra boundary conditions that are effective for the quasi-static equilibrium
iterations only, are usually specified for DOFs where the external forces are
applied. This modifies equation (7.88) so that it becomes nonsingular, and the
iteration can proceed until equilibrium is reached within a specified tolerance.

Fedem 8.0 Theory Guide Dynamics Simulation 7-23

7.8.1 Equilibrium iteration procedure

Starting from equation (7.88), possibly modified by additional boundary
conditions, the iteration will follow the same algorithm as in the dynamic
equilibrium iteration described above, with the exception that the stiffness
matrix K0 replaces the Newton matrix from the dynamic case. For each
iteration the initial position of the mechanism is improved from

ir0 = i−1r0 + iδr0 (7.90)

The updating of the velocity and acceleration vector in the dynamic iteration
procedure is omitted in the quasi-static case. The stiffness matrix is evaluated
in the same way as the Newton matrix described in Section 7.6. All the
stiffness terms from superelement matrices and springs are kept, while the
mass and damping terms from superelement matrices, additional masses, and
dampers are skipped.

The external force vector i−1Q0 in equation (7.88) is evaluated in the same
way as in the dynamic case for the initial time. The inertia and damping
forces, i−1FI

0 and i−1FD
0 , are evaluated based on constant velocities and

accelerations during iteration. However, these vectors may also change during
iteration due to updated positions of the mechanism. The stiffness forces
i−1FS

0 are evaluated in exactly the same way as in the dynamic case.

The iteration based on equation (7.88) is called Newton–Raphson
iteration, or modified Newton–Raphson if the stiffness matrix is kept constant
during some or all iterations. If the stiffness matrix is kept constant during
iteration, the last evaluated and triangularized stiffness matrix is kept for new
iterations. Only the right-hand-side vector of equation (7.88) is then evaluated
for each iteration, and the increments for improving the mechanism position
are evaluated through backward substitution. When many iterations are
necessary, this can save computational effort.

7-24 Dynamics Simulation Fedem 8.0 Theory Guide

7

7.9 Frequency Response Analysis

Frequency response analysis is an alternative approach to compute the
structural response due to steady state excitation given in the frequency
domain. The excitations are applied forces and/or motions, like displacements,
velocities or accelerations. Two types of analysis are available [15]:

� Direct frequency response −The response will be computed by solving a
set of coupled equations by using complex arithmetics.

� Modal frequency response −This method uses the decomposition based
on eigenmodes. A certain number of modes, called the eigenspace, will
be used for the response calculation and reduces the overall system size.

In the end, the modal frequency response will yield exactly the same answer as
the direct frequency response, provided that all modal degrees of freedom are
included in the analysis. However, the strength of the modal approach comes
from the idea that the solution is very close to the direct approach by using
significantly fewer modal degrees of freedom than physical degrees of freedom.

7.9.1 Direct frequency response analysis

In direct frequency response analysis, the response is computed at discrete
excitation frequencies by solving a set of coupled matrix equations. The
equation of damped forced vibration with harmonic excitation is given by:

Mr̈(t) + Cṙ(t) + Kr(t) = P(ω)eiωt (7.91)

The load in equation (7.91) is introduced as a complex vector, which is more
convenient to solve for. From the physical point of view, the load can be real
or imaginary, or both.

For harmonic motion (which is the basis of a frequency response analysis),
a harmonic solution of the following form will be assumed:

r(t) = u(ω)eiωt (7.92)

where r(t) is the complex displacement vector, and ω is the circle frequency of
the periodic load and response. Taking the first and second derivatives of
equation (7.92), the following is obtained:

ṙ(t) = iω u(ω)eiωt (7.93)

r̈(t) = −ω2u(ω)eiωt (7.94)

When the above expressions are substituted into equation (7.91), we obtain:

− ω2Mu(ω)eiωt + iωCu(ω)eiωt + Ku(ω)eiωt = P(ω)eiωt (7.95)

Fedem 8.0 Theory Guide Dynamics Simulation 7-25

which simplifies to

− ω2Mu(ω) + iωCu(ω) + Ku(ω) = P(ω) (7.96)

The expression (7.96) represents a system of equations with complex
coefficients if damping is included or the applied loads have phase angles. This
equation of motion is solved for given forcing frequencies, ω, in the same
manner as for linear static problems, but using complex arithmetics.

7.9.2 Modal frequency response analysis

The modal frequency response analysis method uses the mode shapes of the
structure to reduce the size of the equation system. It uncouples the equations
of motion thereby making the numerical solution more efficient. Since the
mode shapes typically are computed as part of the characterization of the
structure, modal frequency response is a natural extension of a normal mode
analysis.

As a first step in the formulation, the variables are transformed from
physical coordinates u(ω) to modal coordinates by assuming

u(ω) = φφφξξξ(ω)eiωt (7.97)

The equation (7.97) represents an equality if all modes are used. However,
since that rarely is the case the equation represents an approximation.
Substituting the modal coordinates in equation (7.97) for the physical
coordinates in equation (7.96) and simplifying, the following is obtained:

− ω2Mφφφξξξ(ω) + iωCφφφξξξ(ω) + Kφφφξξξ(ω) = P(ω) (7.98)

which represents the equation of motion in modal coordinates.

At this point the equations remain coupled. To uncouple the equations,
premultiply by φφφT to obtain

− ω2φφφTMφφφξξξ(ω) + iωφφφTCφφφξξξ(ω) +φφφTKφφφξξξ(ω) = φφφTP(ω) (7.99)

where the expressions represent:

φφφTMφφφ : modal mass matrix

φφφTCφφφ : modal damping matrix

φφφTKφφφ : modal stiffness matrix

φφφTP : modal load vector

7-26 Dynamics Simulation Fedem 8.0 Theory Guide

7

The final step uses the orthogonality property of the mode shapes to
formulate the equation of motion in terms of the generalized mass, damping
and stiffness matrices, which are diagonal matrices (damping as long as it is
defined as a linear combination between the stiffness and mass matrix).
Therefore, in this form the modal equations of motion are uncoupled. In this
uncoupled form, the equations of motion are written as a set of scalar
equations, like

− ω2mi ξi(ω) + iω ci ξi(ω) + ki ξi(ω) = pi(ω) (7.100)

where

mi : ith modal mass

ci : ith modal damping

ki : ith modal stiffness

pi : ith modal load

The modal form is much faster to solve than the direct method because it
is a series of uncoupled single-degree-of-freedom equations. Once the
individual modal responses are computed, physical responses are recovered as
the summation of the modal responses using equation (7.97). These responses
are in complex form (magnitude/phase or real/imaginary).

7.9.3 Modal vs. direct frequency response

Some general guidelines can be used when selecting modal frequency response
analysis versus direct frequency response analysis. These guidelines are
summarized in table 7.1.

In general, larger models may be solved more efficiently in modal
frequency response because the numerical solution is a solution of a smaller

Table 7.1: Modal vs. Direct Frequency Response

Modal Response
Small model x
Large model x
Few excitation frequencies x
Many excitation frequencies x
High frequency excitation x
Nonmodal damping x
Higher accuracy x

Fedem 8.0 Theory Guide Dynamics Simulation 7-27

system of uncoupled equations. The modal method is particularly
advantageous if the natural frequencies and mode shapes were computed
during a previous stage of the analysis. In that case, you simply perform a
recover/restart. Using the modal approach to solve the uncoupled equations is
very efficient, even for very large numbers of excitation frequencies.

On the other hand, the major portion of the effort in a modal frequency
response analysis is the calculation of the modes. For large systems with a
large number of modes, this operation can be as costly as a direct solution.
This result is especially true for high-frequency excitation. To capture high
frequency response in a modal solution, less accurate, high-frequency modes
must be computed. For small models with a few excitation frequencies, the
direct method may be the most efficient because it solves the equations
without first computing modes. The direct method is also more accurate than
the modal method because the direct method is not concerned with mode
truncation.

7.9.4 Sampling and windowing

The sampling rate defines the upper limit on the frequency that can be used
for analysis of the input data, i.e., the forcing function. It describes the
number of data samples acquired per unit time. The sampling rate is also
denoted as sampling frequency. The upper limit of the frequency band is
given by the Nyquist frequency, fq

fq =
fs
2

and fs =
1

∆ts
(7.101)

where fs is the sampling frequency and ∆ts is the sampling time increment.
E.g., if the sampling frequency is 100 Hz, then the investigations are limited
to 50 Hz and any information beyond this frequency can not be determined.
This means that the sampling frequency must be chosen large enough to get
the desired information from the input data.

Handling large amounts of input data can be done via segmenting, which
reduces the leakage in subsequent fourier transformations while minimizing
discontinuities between the data segments. The duration of each segment is
defined by

Tw = Nw ∆t (7.102)

where Nw denotes the number of samples in each window. The segmenting
procedure consists of multiplying the input data by a finite-length windowing
function with an amplitude that varies smoothly and gradually toward zero at
the edges. In Fedem, the Hanning window (raised-cosine window) is used.

7-28 Dynamics Simulation Fedem 8.0 Theory Guide

7

This windowing function, which is depicted in Figure 7.5, can be seen as one
period of a cosine ‘raised’ so that negative peaks just touch zero.

Figure 7.6 shows a sample input data sequence, for simplicity just a sine
function. Each data segment will then be captured by overlapping and
window tapering such that the sum of all data segments is equal to the
original, except at the ends where the window is still present. An easy way to
accomplish this is to use the Hanning window with 50% overlap, as showed in
Figure 7.7. The additional dashed black line represents the superposition of
the overlapped windows, which results in unity except for at the ends of the
sequences where the window is still present. Figure 7.8 shows the tapered
data segments for three Hanning windows, which are obtained by multiplying
the window function with the input data-sequence. The product is zero-valued
outside the interval. All that is left is the part where they coincide, the “view
through the window”. This input data isolation (tapering) is the main
purpose of window functions.

Figure 7.5: The Hanning window.

Fedem 8.0 Theory Guide Dynamics Simulation 7-29

Figure 7.6: Sample input data.

Figure 7.7: Three Hanning windows with 50% overlap.

It is convenient to perform the windowing and overlapping between
segments in such a way that the windowed data segments are defined in terms
of the absolute time, i.e.,

yk(t) =

{
y(t)ω(t− tk) t ⊂ [tk, tk + T]

0 t 6⊂ [tk, tk + T]
(7.103)

7-30 Dynamics Simulation Fedem 8.0 Theory Guide

7

Figure 7.8: Tapered windows.

For each of these tapered windows, a Fast Fourier Transform (FFT) into the
frequency domain, and an inverse FFT back to time domain will be applied.
After assembling, the ‘tapered system response’ (see Figure 7.9) will be
obtained. As mentioned above, at the ends the window lobes are still active.
The systems response in Figure 7.9 is based on an undamped system. The
transfer function reduces the amplitude, and there is no phase shift because
the system is undamped and not in resonance.

The window size Nw represents the number of samples and herefrom the
duration Tw (see equation (7.102)). It depends on the fundamental frequency,
intensity and change. In general: The lower the frequency, the bigger the
window size should be. The default behaviour in Fedem is to not use
windowing and to treat the entire time series of the simulation in one go.

7.9.5 Fast fourier transformation (FFT)

A Fourier transform takes a signal in the time domain and switches it into the
frequency domain, e.g., it transforms a time series f(t) of N equally- or
uniformly spaced points in time tn = n∆t, n = 0, . . . , N − 1, from the discrete
time (or spatial) domain to the discrete frequency domain. The inverse
Fourier transform does the inverse transformation from the frequency domain
back to the time (or spatial) domain.

Fedem 8.0 Theory Guide Dynamics Simulation 7-31

Figure 7.9: Tapered system response

The discrete Fourier transform (DFT) is defined given by

Xk =

N−1∑
n=0

xne
−i2πkn/N (7.104)

where xn are the values of a signal at equally spaced times n = 0, . . . , N − 1.
The output Xk is a complex number which encodes the amplitude and phase
of a sinusoidal wave with frequency k/N cycles per time unit2. The effect of
computing Xk is to find the coefficients of a signal approximation by a linear
combination of such waves. Since each wave has a whole number of cycles per
N time units, the approximation will be periodic with period N . This
approximation is given by the inverse Fourier transform

xn =
1

N

N−1∑
k=0

Xke
i2πkn/N (7.105)

with

N number of time samples

n current sample (0, . . . , N − 1)

xn value of the signal at time tn

2This comes from Euler’s formula: exp(i2πkn
N

) = cos(2πkn
N

) + i sin(2πkn
N

).

7-32 Dynamics Simulation Fedem 8.0 Theory Guide

7

k current frequency from 0 Hz up to N − 1 Hz

Xk amount of frequency k in the signal (amplitude and phase)

1/N normalization factor

n/N percent of ”going through” time, 2πk speed in radians/sec

The DFT can be efficiently computed by the Fast Fourier Transform (FFT)
algorithm.

Units and spacing

Let ∆t denote the spacing between points in time and N be the number of
points/time samples. The spacing ∆f of the points in frequency is the
1/(N∆t). The quantity 1/∆t is called the sampling frequency fs, which
should be at least twice of the highest frequency that is present in the
underlying continuous signal.

Nyquist frequency, aliasing, mirroring

When all frequencies present in the underlying continuous signal are below the
Nyquist frequency fq = 1

2∆t , then the discretely sampled time series contains
all of the information in the original continuous signal. This is known as the
sampling theorem and is a remarkable fact.

If a frequency exceeds the Nyquist frequency, the power from that
frequency is still transferred to the FFT, but it gets mapped to a bin in the
result as if it had been wrapped around. This phenomena is termed aliasing.
One can think of the resulting spectrum as being a circular buffer, representing
signal at each frequency modulo the maximum frequency of 1

∆t . A frequency
of 1

2∆t would map to the middle bin, also frequencies of 3
2∆t ,

5
2∆t and so on.

Amplitude and phase

Each number in the result of FFT is a complex number, an encoding of both
the amplitude and phase shift of each frequency component. For example, if a
200 Hz component is present, the magnitude of the result at 200 Hz (as given
by the absolute value of complex numbers) gives the power density at that
frequency. For recovering the original signal, the phase of the component is
also relevant. Even though the power density at a certain frequency f is the
same for a sin(2πft), a cos(2πft), or a sin(2πft+ φ0), the phase is different in
each of these cases.

Fedem 8.0 Theory Guide Dynamics Simulation 7-33

The absolute height of an FFT is sometimes confusing. The FFT reflects
the total energy of the signal, including the positive and negative frequencies.
Only the positive frequencies are from interest and therefore for getting the
amplitudes of the input, the FFT must be multiplied by 2.

Efficiency

The FFT algorithm is a fast implementation of the Discrete Fourier
Transform (DFT), which is most efficient when the number of elements N in t
and f is an even power of 2. The worst efficiency will occur if N is a prime
number, the efficiency of the FFT decreases to the efficiency of the DFT itself.
A DFT requires O(N2) steps, a FFT requires O(N log(N)) steps.

7.9.6 Modal damping

Finding proper specification for the structural damping is one of the most
challenging input tasks, because verification is possible only by performing a
response analysis in the time domine. One way to specify the damping is by
means of modal damping, where the frequency-dependent damping ratio as
the percentage of the critical damping is specified for each mode. This will
then result in a diagonal damping matrix associated with the modes.

The modal damping ratio can be calculated via

ζi =
ci
ccr,i

(7.106)

with the critical damping ccr,i = 2miωi and ω2
i = ki

mi
. The important

characteristic in modal damping reflects that the damping values are
calculated at natural frequencies and not at the excitation frequencies.

7-34 Dynamics Simulation Fedem 8.0 Theory Guide

8

Chapter 8 Control System

Mechanisms are often connected to or acted upon by items such as sensors,
controllers, and actuators; therefore, a need exists for multidisciplinary
mechanism and/or finite-element control simulation. Consequently, a control
system has been developed for simulation in a composite system.

8.1 Problem statement

Elements have been designed to model these sensors, controllers, actuators,
and so on, which are referred to as control elements or control blocks. Control
elements are actually functions, also referred to as control equations, that
describe the modeled element. The control elements can be connected
together with input and output blocks to perform more complex operations.
Once connected the elements are referred to as a control module.

Separate numerical methods are used for the structural and control
calculations, so that only minor changes are imposed on the FEM part.

The structural equation constitutes a 2nd order system for the linear case
and can be written as:

Mr̈ + Cr̈ + Kr = Q(t) (8.1)

where r is the vector of displacement, M, C and K are matrices for mass,
damping, and stiffness, respectively, and Q(t) is a vector of time-dependent
forces acting on the structure.

The control equations can usually be written in the following form:

ẋ = f(t,u,x, z) (8.2)

O = g(t,u,x, z) (8.3)

where u, x and z are vectors of inputs, state variables, and algebraic variables,
respectively. Most control elements are not explicitly time-dependent.
Exceptions are elements with inherent clock functions, such as those in a
sample and hold element or a multiplexing unit.

The structural and control calculations are coupled when some elements
from the displacement vector enter into input vector u and, in response, some
of the forces in Q(t) are taken from the control variables x or z. Any
remaining inputs of u can be time functions, such as a controller reference.

Fedem 8.0 Theory Guide Control System 8-1

The system for solving the structural calculations is based on Newmark’s
established β-method with (as a general rule) γ = 1

2 and β = 1
4 (see [11]).

These parameters correspond to the trapezoidal rule.

The dimensions of the discrete structural calculations are usually much
higher than those of the control calculations, and therefore represent the
heaviest portion of the computations.

In terms of accuracy, the structural calculations can be expected to limit
the time step more than the control calculations. However, cases may exist in
which the coupling between the structural and control calculations limits the
time step more than either of the two calculations.

The control system module integrates the variables in the
differential-algebraic system one step forward from a given state. The solution
for the control system part is iterated until there is convergence on each
invocation; therefore, these iterations form an inner loop of the dynamic
integration iterations.

8.2 Control variables

The system is divided into three types of variables: inputs, state, and
algebraic variables. The user defines inputs, while the system automatically
determines state and algebraic variables. The inputs are either external time
functions such as a controller reference, or sensor inputs that are not changed
in the control system.

Control elements are identified by type and have a number of inputs,
internal states, and outputs. The internal states are not connected to other
modules. In addition, there are a number of parameters the user needs to
provide. Figure 8.1 shows a module of type nn, with i inputs, j internal
states, k outputs, and m parameters.

The user needs to bear two things in mind concerning this system. First,
some parameters are used to carry values from one time step to another.
These parameters appear in parentheses in the library and are not provided
by the user. Second, the distinction between inputs and outputs cannot be
made for some elements before the configuration is set up. This is known as
the causality problem and may occur in algebraic relations (see [9]). However,
this problem is resolved by the system during initialization.

To configure a control scheme, the user draws a block scheme of modules
from the library, as shown in Figure 8.2.

8-2 Control System Fedem 8.0 Theory Guide

8

e ...

e
i

1

General e...

e
i+ j + k

i+ j + 1

?

1
· · ·

?

m

e
i+ 1

· · · e
i+ j

Figure 8.1: The general control module

e1
e 0 k

k
ω2

c+2ξω0s+s2
e2 e3 e5

e4

6

?

k

?

k

?

ω0

?

ξ

Figure 8.2: Configuration example

8.3 Control system tasks

The control system module manages the three main activities: Initialization,
steady state computation, and integration.

8.3.1 Initialization

During initialization the task is to label the state and algebraic variables. For
the algebraic variables of equation (8.3), initialization determines which
variable to allocate to the function value. Each module must be prepared for
this task, which is managed during the initialization process. Algebraic loops
or causality problems may require several iterations.

Fedem 8.0 Theory Guide Control System 8-3

8.3.2 Steady state

With the different types of variables collected in one vector,

y =

 u
x
z

 (8.4)

the set of equations may be written:

F(t,y, ẏ) =

 −u + s(t)
−ẋ + f(t,y)

g(t,y)

 =

 0
0
0

 (8.5)

Steady state is found by setting the derivative to zero. Applying Newton
iteration to equation (8.5) produces the following system which is solved at
iteration number k: I 0 0

0 −fx −fz
0 −gx −gz

 ∆uk

∆xk

∆zk

 =

 0
f(t,u,xk, zk)
g(t,u,xk, zk)

 (8.6)

A standard equation solver is used for the solution of this vector equation.

8.3.3 Time integration

Integration is performed using two numerical methods to estimate local error.

A starting point of equation (8.5) is established for the development of the
numerical equations. All the input components can be treated as time
functions, even though some of them are determined by the structure
calculations. The inputs are not changed in the control calculations. Because
they are labeled, the variables in vector y do not have to be be ordered
according to type; this is for convenience of development notation only.

Since Newmark’s β method is of second order, it naturally follows that a
method of second order is chosen for the control part also. Therefore, Lobatto
IIIC, an implicit, second-order Runge-Kutta method, is selected. Backward
Euler, which is first-order and also implicit, is used for local error estimation.
Local extrapolation is used, meaning that the integration proceeds with the
result from the higher-order method.

The general m-level Runge-Kutta (RK) method for the solution of

8-4 Control System Fedem 8.0 Theory Guide

8

c A
bT

Table 8.1: Butcher tableau

1 1
1

0 1/2 -1/2
1 1/2 1/2

1/2 1/2

Table 8.2: Backward Euler and Lobatto IIIC

equation (8.5) can be written:

F (t+ cih, Yi, Ẏi) = 0 (8.7)

Yi = yn + h

m∑
j=1

aij Ẏi (8.8)

yn+1 = yn + h

m∑
i=1

biẎi (8.9)

where h is the time step. To visualize a particular method, the matrix A and
the vectors b and c formed by the a, b and c coefficients are usually put in a
tableau as shown in Table 8.1. For backward Euler and Lobatto IIIC, we have
the following Butcher tableau given by Table 8.2.

For an RK method satisfying

bi = ami, for i = 1, . . . ,m (8.10)

a recording of the response in the variables is obtained as in the two methods
above.

yn+1 = Ym (8.11)

From equations (8.10) and (8.11) an explicit expression may be derived for Y:

Ẏi =
1

h

m∑
j=1

dij (Yj − yn) , where dij = D = A−1 (8.12)

The equations (8.8)–(8.12) can then be replaced by:

F

t+ cihYi
1

h

m∑
j=1

dij (Yj − yn)

 = 0, for i = 1, . . . ,m (8.13)

yn+1 = Ym (8.14)

Fedem 8.0 Theory Guide Control System 8-5

For Backward Euler this gives:

F

(
tn+1, ỹn+1,

1

h
(ỹn+1 − yn)

)
= 0 (8.15)

and for Lobatto IIIC:

F

(
tn, Y1,

1

h
(Y1 + Y2 − 2yn)

)
= 0 (8.16)

F

(
tn+1, Y2,

1

h
(−Y1 + y2)

)
= 0 (8.17)

The local error estimate is then:

ln+1 = ‖yn+1 − ỹn+1‖ (8.18)

To find the solution of the implicit numerical equations (8.15), (8.16)
and (8.17), Newton iteration is used as in steady state. Starting values for the
iterations are:

ỹ0
n+1 = yn +

hn+1

hn
(yn − yn−1) (8.19)

Y 0
1,n+1 = yn (8.20)

Y 0
2,n+1 = ỹn+1 (8.21)

The Jacobian, which is needed in the Newton matrices, is generated
numerically. This is done by excitation of each variable in turn and recording
of the response in the other variables.

8.4 Control element library

The control elements represent basic algebraic or differential functions; time-
dependent sample and hold functions; basic linear transfer functions; the most
frequently used controllers; and algebraic elements with discontinuities in one
of their derivatives, such as the logical switch, limitation, and dead zone.

In the case of the sample and hold element, the user meets no restriction
with respect to relations between the sample period and the numerical time
step. However, to maintain the order of the method, the control system has to
adjust the time step to collect the appropriate sample points.

Each sample represents a discontinuous change in the variable. The
discontinuity is said to be of order q when it occurs in the q’th derivative of

8-6 Control System Fedem 8.0 Theory Guide

8

one of the variables and the lower-order derivatives are continuous. Gear and
Østerby [7] have shown that the accuracy of the result will drop below the
order p when q ≤ p, unless we the integration points hit the discrete
discontinuity points. With p = 2, actions must be taken for discontinuities in
the first derivative of the right-hand side of equation (8.3).

The discontinuity points of regular sampling is foreseen easily, however,
this is not the case for other element types, such as the logical switch or dead
zone. In these cases the discontinuity point must be found by interpolation.
For this purpose, an interpolant is used that is optimal for Lobatto IIIC. For
development of interpolants for RK-methods refer to [6] for an example.

8.4.1 Basic Elements

Comparator type 1

e2
−

e1
+

0 e3

?

K

y3 = K(y1 − y2)

Adder type 2

e2
+

e1
+

0 e3

?

K

y3 = K(y1 + y2)

Fedem 8.0 Theory Guide Control System 8-7

Amplifier type 3

e1 K e2

?

K

y2 = Ky1

Integrator type 4

e1
K

s
e2

?

K
ẏ2 = Ky1

The resulting output is then

y2 = K

∫ t

0

y1dτ

Limited derivator type 5

e1
s

1 + Tus
e3

?

Tu

e 2

ẏ2 = y3

y3 =
1

Tu
(y1 − y2)

y2 is an internal variable.

Multiplier type 6

e2

e1

⊗ e3 y3 = y1y2

8-8 Control System Fedem 8.0 Theory Guide

8

Power type 7

e1 p e2

?

K

y2 = yp1

8.4.2 Time dependent elements

Time delay type 11

e1

?

T

e−Ts e2

y2(t) = y1(t− T)

Sample and hold type 12

e1

?

T

?

m

?

d

1
s (1− e−Ts) e2

y2(t) = y1(t∗)

t∗ = (
t− d T
mT

)mT

T - basic sample period
m - multiplicity of basic sample period
d - phase delay in basic sample periods

Fedem 8.0 Theory Guide Control System 8-9

8.4.3 Piecewise Continuous Elements

Logic switch type 21

e1

?

L

?

Yon

?

U

-

6

L

U
Yon e2

y2 =

{
L for y1 < Yon

U for y1 ≥ Yon

L - lower value
U - upper value
Yon - switch coordinate

Limitation type 22

e1

?

L

?

U

-

6

L�
�
�
U e2

y2 = max {L,min {U, y1}}

L - lower limit
U - upper limit

Dead Zone type 23

e1

?

L

?

R

-

6

��

L

R
�� e2

y2 =

 y1 − L for y1 < L
0 for L ≤ y1 ≤ R

y1 −R for y1 > Y0

L - left limit
U - right limit

8-10 Control System Fedem 8.0 Theory Guide

8

Hysteresis type 24

e1

?

L

?

R

?

α

-

6

�
�
��L

R
�
�
�� e2

y2 =

 α(y1 −R) on right slope
α(y1 − L) on left slope

y1 otherwise

L - left limit
R - right limit

8.4.4 Compensator Elements

PI type 31

e1 Kp
1 + Tis

Tis
e3

?

Kp

?

Ti

e 2

ẏ2 = y1

y3 = Kp

(
y1 +

1

Ti
y2

)
where y2 is an internal variable.

The resulting output is then

y3 = Kp

(
y1 +

1

Ti

∫ t

0

y1dτ

)

P + lim. I type 32

e1 Kp
Tfi
Ti

1 + Tis

1 + Tfis
e4

?

Kp

?

Ti

?

Tfi

e 2 e 3

ẏ2 = y1 Tfi > Ti
ẏ3 = y4

y4 = Kp

(
y1 +

1

Ti
y2

)
− 1

Tfi
y3

y2 and y3 are internal variables.

Fedem 8.0 Theory Guide Control System 8-11

PD type 33

e1 Kp(1 + Tds) e4

?

Kp

?

Td

e 2 e 3

ẏ2 = y1

ẏ3 = y4

y3 = Kp (Tdy1 + y2)

where y2 and y3 are
internal variables.

The resulting output is then
y4 = Kp (y1 + Tdẏ1)

P + lim. D type 34

e1 Kp
1 + Tds

1 + Tfds
e4

?

Kp

?

Td

?

Tfd

e 2 e 3

ẏ2 = y1 Tfd < Td
ẏ3 = y4

y4 =
1

Tfd
(Kp(Tdy1 + y2)− y3)

y2 and y3 are internal variables.

PID type 35

e1 Kp

(
1 +

1

Tis
+ Tds

) e5

?

Kp

?

Ti

?

Td

e 2 e 3 e 4

ẏ2 = y1

ẏ3 = y2

ẏ4 = y5

y4 = Kp

(
Tdy1 + y2 +

1

Ti
y3

)
where y2, y3 and y4

are internal variables.

The resulting output is then

y5 = Kp

(
y1 +

1

Ti

∫ t

0

y1dτ + Tdẏ1

)

8-12 Control System Fedem 8.0 Theory Guide

8

PI + lim. D type 36

e1 Kp
1 + Tis

Tis

1 + Tds

1 + Tfds
e5

?

Kp

?

Ti

?

Td

?

Tfd

e 2 e 3 e 4

ẏ2 = y1

ẏ3 = Kp

(
y1 +

1

Ti
y2

)
ẏ4 = y5

y5 =
1

Tfd
(Tdẏ3 + y3 − y4)

y2, y3 and y4 are internal variables.

P + lim. I + lim. D type 37

e1 Kp
Tfi
Ti

1 + Tis

1 + Tfis

1 + Tds

1 + Tfds
e5

?

Kp

?

Ti

?

Td

?

Tfi

?

Tfd

e 2 e 3 e 4

ẏ2 = y1

ẏ3 = Kp

(
y1 +

1

Ti
y2

)
− 1

Tfi
y3

ẏ4 = y5

y5 =
1

Tfd
(Tdẏ3 + y3 − y4)

y2, y3 and y4 are internal variables.

8.4.5 General Transfer Functions

Real pole type 41

e1
K

1 + Ts
e2

?

K

?

T

y2 =
1

T
(Ky1 − y2)

Fedem 8.0 Theory Guide Control System 8-13

Complex Conjugate Pole type 42

e1
K

ω0 + 2ξω0s+ s2
e3

?

K

?

ω0

?

ξ

e 2

ẏ2 = Ky1 − 2ξω0 − ω2
0y3

ẏ3 = y2

y2 is an internal variable.

1st Order Element type 43

e1 Kp
1 + T2s

1 + T1s
e4

?

Kp

?

T1

?

T2

e 2 e 3

ẏ2 = y1

ẏ3 = y4

ẏ4 =
1

T1
(Kp (T2y1 + y2)− y3)

y2 and y3 are internal variables.

2nd Order Element type 44

e1 Kp
1 + T3s+ T4s

2

1 + T1s+ T2s2
e6

?

Kp

?

T1

?

T2

?

T3

?

T4

e 2 e 3 e 4 e 5

ẏ2 = y1

ẏ3 = y2

ẏ4 = y6

ẏ5 = y4

ẏ6 =
1

T2
(Kp(T4y1 + T3y2 + y3)

− T1y4 − y5)

y2, y3, y4 and y5 are internal
variables.

8-14 Control System Fedem 8.0 Theory Guide

9

Chapter 9 Simulation Results

9.1 Fatigue analysis

Through fatigue analysis, one can asses the estimated life of a structural
component subjected to cyclic or repetitive loads, based on the computed
stress or strain history and some additional material properties.

The input to the fatigue analysis is the stress/strain reading in a virtual
strain gauge for each time step of the dynamics simulation, or alternatively
one can compute the Signed absolute max principal strain from the strain
rosette tensor. Letting {ε1, ε2} denote the maximum and minimum principal
strains1, respectively, the signed absolute max value is defined through

εsamax = {εi : |εi| = max{|ε1|, |ε2|}} (9.1)

Similarly, one can derive the signed absolute max principal stress, σsamax from
the stress tensor. Using equation (9.1) will normally give a more conservative
life assessment compared to using a gauge leg reading, in cases where direction
of the maximum strain varies during the simulated event. Using a gauge
strain directly does not account for such variations.

9.1.1 Peak valley extraction

The first step in the process of obtaining the estimated life at a given point, is
to simplify the stress/strain history curve measured by the virtual strain
gauge, and removing oscillations smaller than a given threshold (gate value).
This is a process often referred to as peak valley extraction.

Consider the typical stress history reading, i.e., σsamax(t), in Figure 9.1a),
which typically consists of hundreds (if not thousands) of data points. In a life
assessment, it is only the turning points of the curve that matter, i.e., where
the gradient of the curve changes sign. Thus, after peak valley extraction using
a gate value of 1 MPa, the processed curve ends up as shown in Figure 9.1b).
The number of data points has been reduced from 201 to only 22 in this case.

1These quantities are the same as the largest and smallest eigenvalues of the symmetric
strain tensor.

Fedem 8.0 Theory Guide Simulation Results 9-1

9.1.2 Rainflow analysis

The next step of the fatigue analysis is to perform a rainflow counting on the
processed stress/strain signal, in order to further reduce a spectrum of varying
stresses/strains into a set of simple stress/strain reversals. The process is
named rainflow counting because it can be explained by viewing the stress
history curve like the one in Figure 9.1b) as a series of Padoga roofs when it is
rotated 90 degrees with the time axis vertically, and letting drops of water
flow from each peak and valley. The stress cycles are then defined by how
each flow of water is terminated according to a set of rules.

In the algorithm adopted in Fedem, we traverse the peak and valley curve
in steps looking at three line segments defined by four neighboring points of
the curve (labeled 1, 2, 3, 4) in each step: If the middle line 2-3 is shorter
than both end lines 1-2 and 3-4, and its gradient has opposite sign as the
gradient of both lines 1-2 and 3-4, then the points 2 and 3 define a full stress
cycle and is removed from the curve. We then proceed to the next step in
which the previous point 4 becomes the new point 2, while the subsequent two
points in the curve become the new points 3 and 4. If the points 2 and 3 were
not removed, all four point counters are incremented while proceeding to the
next step. We then continue until the entire curve has been traversed once.

The traversal is then restarted from the beginning of the curve, and
repeated until no more full cycles could be found during one traversal. This
process is illustrated in Figure 9.2 for the stress curve of Figure 9.1, where we
have encircled the full cycles detected during the first traversal. When these
points are removed, the resulting curve becomes as shown in Figure 9.3a).

Even when no more full cycles can be detected through the procedure

a) b)

Figure 9.1: Peak valley extraction of a stress history curve. a) The original
stress curve. b) The processed curve consisting of the turning points (+) only.

9-2 Simulation Results Fedem 8.0 Theory Guide

9

outlined above, there will normally still be some left-over points in the curve.
This is the situation already after the first traversal for the curve in Figure 9.2.
The remaining curve is then modified by duplicating the point with the largest
magnitude, and then shifting the added point and all preceding points to the
end of the curve, as illustrated by the arrow in Figure 9.3a). The modified
curve then becomes as shown in Figure 9.3b). Here, the two points indicated
by the arrows are not ‘turning points’. They are therefore removed from the
curve without counting a cycle, resulting in the blue portion of the curve
instead. The traversal can now be repeated on the modified curve, until only
three points remain which then will count as the final cycle. This process is
depicted by the Figures 9.3b-d), where one cycle is detected in each traversal.

The rainflow counting outlined above can be performed in a similar
manner for a stress history and a strain history curve. In Fedem it is only
applied on stress history results.

9.1.3 Damage and life calculation

The rainflow analysis produces a list of stress ranges with magnitudes σ̄i
representing the entire stress history in a given point for the duration of the

Figure 9.2: Rainflow analysis: Points defining full stress cycles detected during
the first traversal of the curve in Figure 9.1b).

Fedem 8.0 Theory Guide Simulation Results 9-3

a) b)

c) d)

Figure 9.3: Subsequent steps of the rainflow analysis: a) Inserting an additional
max point making it the new start and end point. b) Removing two ‘non-
turning’ points and the next full stress cycle. c) Removing another full cycle in
the next traversal. d) Counting the final cycle.

numerical simulation. The accumulated damage in that point can now be
computed using the S-N curve for the material in question.

An S-N curve relates a stress range magnitude (S) to the number of
repetitions (N) of a cycle of that magnitude, a material point can sustain
before failure. S-N curves are typically derived from tests on samples of the
material in question, and may be found in various design codes for certain
materials and loading conditions.

For a given set of stress ranges, σ̄i, i = 1 . . . k, we read the corresponding
number of cycles before failure, Ni, from the specified S-N, curve. The

9-4 Simulation Results Fedem 8.0 Theory Guide

9

accumulated damage is then computed as

C =

k∑
i=1

1

Ni
(9.2)

and failure occurs when C >= 1.0. The estimated life in terms of number of
repetitions of the simulated loading event is then the reciprocal of this value,
1/C. If the simulated time span is denoted Ts, the estimated life at the
material point is therefore

Life =
Ts
C

(9.3)

9.2 Energy calculations

Energy calculations are described by the following terms:

Uε Strain energy, computed for all links (superelements), springs, and
the system (the system is the sum of all mechanisms)

Uk Kinetic energy, computed for all links, discrete masses, rotational
inertias, and the system

Up Potential energy, computed for all links, discrete masses, and the
system

Ui Input energy, computed for all external forces, springs (contribution
from non-constant, stress-free length), and the system

Ud Energy loss, computed for all links (structural damping), axial
dampers, joint dampers, joint friction, and the system

Ue External energy, computed for all external “elements”, such as tires,
that are using 3rd party software modules. The energy can be one of
(or a mix of) strain, damping, and other energy terms.

Usum Energy check-sum, computed for the system

All these terms are can be plotted as functions of time or other variables.

9.2.1 Strain energy

The total strain energy for the system is computed as a sum of all the element
strain energies and spring strain energies.

Fedem 8.0 Theory Guide Simulation Results 9-5

Link strain energy

The strain energy for one link with linearly elastic material is given by

Uε =
1

2
vTd Kvd (9.4)

where vd is the deformational displacement of the element, and K is the
element stiffness matrix. The strain energy is thus computed on a total form
at each converged time-step; in other words, no storage of previous strain
energy is necessary.

Spring strain energy

Even the nonlinear springs have hyper-elastic behavior, and the strain energy
is computed totally at each converged time-step.

Linear springs : Uε =
1

2
ksu

2 (9.5)

Nonlinear springs: Uε =

∫ u

0

fs (û) dû

As the expression for the hyper-elastic, nonlinear spring energy also includes
the linear spring element, it is used for all spring elements, linear and
nonlinear, and for axial and joint springs. Incremental calculations of the
spring strain energy are not necessary as long as only hyper-elastic nonlinear
springs are included in the model.

9.2.2 Kinetic energy

System kinetic energy consists of the contributions from all the links, all the
lumped masses, and all the discrete rotational inertias.

Link kinetic energy

The link kinetic energy is calculated from the superelement mass matrix, M
and the superelement velocity vector, v̇, as:

Uk =
1

2
v̇TMv̇. (9.6)

In other words, it is also computed on a total form for each time-step.

9-6 Simulation Results Fedem 8.0 Theory Guide

9

Kinetic energy from discrete masses and inertias

Discrete masses and rotational inertias contribute to the kinetic energy as:

Uk =
1

2
mu̇T u̇ +

1

2
ωT Iωω, (9.7)

where m is the lumped mass and Iω is the rotational inertia matrix for the
lumped mass.

9.2.3 Potential energy

As is the case with the kinetic energy, the system’s potential energy is the
sum off all the contributions from the links and the discrete masses. However,
the discrete rotational inertias do not contribute to the potential energy.

Link potential energy

Computation of the potential energy should reflect the changes in potential
energy rather than the potential energy in relation to the coordinate system
used for modeling. Choosing a coordinate system which gives large potential
energies may hide other energy contributions. By subtracting the potential
energy of the masses in their initial position C0 from the potential energy at
the present position Cn, the initial

potential energy of all masses, superelement masses, and lumped masses is
zero.

Up = mgT (xCn
− xC0

) (9.8)

Calculations of the potential energy of the links use the displacements of the
link centroid. This calculation neglects the relative displacement of the
centroid due to internal deformations of the superelements; however this is
justified by assuming small deformations. The calculation of the potential
energy is performed entirely without storing energies from previous steps.

9.2.4 Input energy

Input energy to the system consists of contributions from external forces and
springs that have non-constant, stress-free length.

Fedem 8.0 Theory Guide Simulation Results 9-7

Input energy from external forces

Since the external forces are non-conservative (i.e., can have a time variation
and co-rotational behavior), the input energy from the external forces must be
computed in an incremental manner from one time-step to the next:

Ui =

∫ t

0

FT
(
t̂
)
u̇ dt̂ ≈

n∑
k=1

F
T

k ∆uk where Fk =
1

2
(Fk−1 + Fk) (9.9)

Subscript k is the time-step index. The summation expression above
represents a trapezoidal integration scheme.

Input energy from springs

The stress-free lengths of the springs (both axial springs and joint springs) are
subject to possible change. When the spring is stressed, this represents an
input energy contribution. This input energy must be computed incrementally
for all the springs:

Ui =

∫ t

0

fs(t̂)l0 dt̂ ≈
n∑
k=1

fsk∆l0 where fsk =
1

2
(fsk−1

+ fsk) (9.10)

9.2.5 Energy loss

Total energy loss consists of the contributions from structural damping in the
links and discrete dampers (both axial dampers and joint dampers), and
energy loss from joint friction.

Energy loss from link structural damping

The structural damping of the links is composed of mass and stiffness
proportional damping (C = α1M + α2K), which is used in the following
damping energy expression for a link

Ud =

∫ t

0

v̇TCv̇dt̂ ≈
n∑
k=1

hα1
¯̇vTk M¯̇vk +

n∑
k=1

hα2v̇d
T
kKv̇dk (9.11)

where ¯̇vTk = 1
2 (v̇k−1 + v̇k), and v̇dk = 1

h (vdk − vdk−1), and h represent the
time-step size. Note that the deformational velocities, v̇d, are used when
computing the stiffness proportional damping energy. This is important to
avoid false damping energies from rigid-body velocities when using large
time-steps.

9-8 Simulation Results Fedem 8.0 Theory Guide

9

Energy loss from discrete dampers

Energy loss from discrete dampers (axial dampers and joint dampers) is
computed as

Ud =

∫ t

0

fdu̇ dt ≈
n∑
k=1

fdk∆u (9.12)

where fdk = 1
2

(
fdk−1 + fdk

)
Energy loss from friction

Friction energy loss is computationally analogous to the damping loss

Ud =

∫ t

0

ff dt ≈
n∑
k=1

ff k∆uk (9.13)

where ff k = 1
2

(
ff k−1 + ff k

)
9.2.6 External energy

External energy from 3rd party components such as tires is calculated is
calculated through the incremental work performed at the component
interface from one time-step to the next:

Ue =

∫ t

0

FT
(
t̂
)
u̇ dt̂ ≈

n∑
k=1

F
T

k ∆uk where Fk =
1

2
(Fk−1 + Fk) (9.14)

Subscript k is the time-step index. The summation expression above
represents a trapezoidal integration scheme. The forces F from the component
can have contribution from both stiffness and damping forces, and the energy
contribution is thus a mixed energy.

9.2.7 Energy check-sum

An energy check-sum is computed for the system to verify that the system
energy is preserved:

Usum = Upsystem + Uksystem + Uεsystem + Udsystem − Uisystem − Uesystem (9.15)

The check-sum should remain constant during time integration.

Fedem 8.0 Theory Guide Simulation Results 9-9

10 Simulation Results Fedem 8.0 Theory Guide

A

Appendix A Finite Element Library

The finite element library in Fedem contains the element types listed in
Table A.1. The BUSH, SPRING and RSPRING elements are mass less and
contribute to the stiffness matrix only, whereas the CMASS element
contributes to the mass matrix only. The RBAR, RGD and WAVGM
elements have neither mass nor stiffness on their own. They are constraint
elements, i.e., they introduce linear couplings between the degrees of freedom
of the other elements in various manners. All the other elements listed in
Table A.1 are standard linearized finite elements with both stiffness and mass.

A brief description of these basic elements is given in the following
sections. In addition, the formulation of the Generic part element is given in
Section A.16. The latter element is used to represent a link in the Fedem
Dynamics Solver, when a proper finite element representation is not available
or has not yet been established (see the Fedem 8.0 User Guide, Section 4.1
“Links”).

Element name Element description

FFT3 3-node triangular shell element
FFQ4 4-node quadrilateral shell element
TET4 4-node isoparametric tetrahedron solid element
TET10 10-node isoparametric tetrahedron solid element
WEDG6 6-node isoparametric prismatic solid element
WEDG15 15-node isoparametric prismatic solid element
HEX8 Linear isoparametric hexahedron solid element
HEX20 Quadratic isoparametric hexahedron solid element
BEAM2 2-node linear beam element, also used for spot welds
BUSH 2-node bushing element (generalized spring)
SPRING 2-node translatory spring
RSPRING 2-node rotational spring
CMASS Single-node concentrated mass element
RBAR 2-node rigid bar
RGD Multi-node rigid body
WAVGM Multi-node weighted averaged motion element

Table A.1: Fedem element library.

Fedem 8.0 Theory Guide Finite Element Library A-1

A.1 FFT3

The 3-node triangular shell element FFT3 is composed of a triangular element
for plate bending by Allman [1], and a triangular membrane element with
rotational Degree of Freedom (DOF) by Bergan and Felippa [4]. The
membrane part of FFT3 has 9 DOFs; 6 corner translations, and 3 corner
normal rotations. The element is coordinate invariant and passes the patch
test for any geometry.

The element performs significantly better than the constant strain triangle.
Because of the presence of the normal rotation DOFs, FFT3 is well suited to
modeling general shell structures.

The FFT3 element is referred to in a global Cartesian coordinate system
as shown in Figure A.1. The element nodes are numbered 1-2-3, and a local
coordinate system (x, y, z) is defined in such a way that the x− y plane
coincides with the middle surface of the element. Origin is taken at node 1,
and positive x-axis coincides with edge 1-2, while positive y-axis is taken in
direction from the x-axis toward node 3. Positive z-axis is defined in such a
way that x, y and z form a right-handed coordinate system. The nodal DOFs
are u, v, w, rx, ry and rz.

-

6

�
�
��	

xlink

ylink

zlink

e
1

e
2

e
3
��*
��*��*
u

rxCCO

CCOC
CO

v

ry

HHY
HHYHHY
w

rz

��
�* xelem

C
C
C
C
C
C
C
COyelem

HH
HHY

zelem

Figure A.1: FFT3, Flat triangular shell element

A-2 Finite Element Library Fedem 8.0 Theory Guide

A

A.2 FFQ4

The 4-node quadrilateral shell element FFQ4 is composed of a Quadrilateral
plate Bending Element with Shear deformation (QBESH) and a Quadrilateral
Membrane element with Rotational degrees of Freedom (QMRF). The QMRF
element has 12 DOFs; 8 corner translations (u, v), and 4 corner normal
rotations (rz). The element is coordinate invariant and passes the patch test
for any geometry. The element performance is significantly better than that of
the linear isoparametric quadrilateral. Because of the presence of the normal
rotation DOFs, QMRF is well suited to modeling general shell structures. The
QBESH element is a quadrilateral plate-bending element that passes the
individual element test. The element has 12 DOFs; 3 DOFs (w, rx, ry) at each
of the 4 nodes. Transverse shear deformation is included in the formulation.

The FFQ4 element is capable of handling warped element geometries by
utilizing projection techniques that restore force equilibrium and correct rigid
body motion (see [5] and [12]).

The FFQ4 element is referred to in a Cartesian link coordinate system as
shown in Figure A.2. The element nodes are numbered counter-clockwise
1-2-3-4. The nodal DOFs are u, v, w, rx, ry, and rz.

-

6

�
�
��	

xlink

ylink

zlink

e
1

e 2

e
3e4

��*
��*��*

u
rxCCO

CCOC
CO

v

ry

HHY
HHYHHY
w

rz

��
�* xelem

C
C
C
C
C
C
C
C
CCO

yelem

HH
HHY

zelem

Figure A.2: FFQ4, Flat quadrilateral shell element

Fedem 8.0 Theory Guide Finite Element Library A-3

A.3 TET4

TET4 is a solid constant strain tetrahedron element with 4 nodes and 12
DOFs. The nodal points at the corners of the tetrahedron are numbered 1
through 4 as shown in Figure A.3.

A.4 TET10

TET10 is an isoparametric tetrahedron element with 30 DOFs; 3 DOFs
(u, v, w) at each of the 10 nodes (4 corner nodes and 6 mid-edge nodes). The
edges may be straight or curved. Figure A.4 shows a typical element and its
local node numbering. The local node numbering 1 through 10 must be
carried out in a right-hand direction with nodes 1, 7 and 10 on the same edge.

A.5 WEDG6

WEDG6 is an isoparametric triangular prism element with 18 DOFs; 3 DOFs
(u, v, w) at each of the 6 corner nodes. The edges are straight, and Figure A.5
shows a typical element with local node numbering. The local node
numbering 1 through 6 must be carried out in a right-hand direction, with
nodes 1 and 4 on the same edge. The WEDG6 element has constant strains
for triangular cross-sections, and a limited linear variation of the strains in the
direction transverse to the triangular side.

A.6 WEDG15

WEDG15 is an isoparametric triangular prism element with 45 DOFs; 3 DOFs
(u, v, w) at each of the 15 nodes (6 corner and 9 mid-edge nodes). The edges
may be straight or curved. Figure A.6 shows a typical element with local node
numbering. The local node numbering 1 through 15 must be carried out in a
right-hand direction with nodes 1, 7 and 10 on the same edge. WEDG15 has
stresses with minimum linear variation; in addition, it has an incomplete
quadratic variation of stresses in the direction transverse to the triangular
side. Some stress components also have a quadratic variation in the directions
parallel to the triangular side, for example, the transverse stress component.

A-4 Finite Element Library Fedem 8.0 Theory Guide

A

-

6

�
�
��	

xlink

ylink

zlink

e
1 e

2

e 3

e4

- v
6

w

��	u

Figure A.3: TET4, Constant strain tetrahedron element

-

6

�
�
��	

xlink

ylink

zlink

e
1 e

3

e 5

e10

e
2

e4

e6
e7 e8

e9

- v
6

w

��	u

Figure A.4: TET10, Isoparametric tetrahedron element

Fedem 8.0 Theory Guide Finite Element Library A-5

-

6

�
�
��	

xlink

ylink

zlink

e
1 e

2

e3

e
4 e

5

e6

- v
6

w

��	u

Figure A.5: WEDG6, Isoparametric triangular prismatic element

-

6

�
�
��	

xlink

ylink

zlink

e
1 e

3

e5

e10 e
12

e14

e
2

e4
e6

e7 e8

e
9

e
11

e13

e15

- v
6

w

��	u

Figure A.6: WEDG15, Isoparametric prismatic element

A-6 Finite Element Library Fedem 8.0 Theory Guide

A

A.7 HEX8

HEX8 is a solid hexahedron element with 8 nodal points and 24 DOFs. The
nodal points located at the corners of the hexahedron are numbered 1 through
8 as shown in Figure A.7. HEX8 is an isoparametric element with linear
displacement shape functions.

A.8 HEX20

HEX20 is an isoparametric hexahedron element with 60 DOFs; 3 DOFs
(u, v, w) at each of the 20 nodes (8 corner and 12 mid-edge nodes). The edges
may be straight or curved, and Figure A.8 shows a typical element with local
node numbering. The local node numbering 1 through 20 must be carried out
in a right-hand direction with nodes 1, 9 and 13 on the same edge. HEX20
yields an incomplete quadratic variation of the displacements. The minimum
variation of stresses along a border is linear for this element.

A.9 BEAM2

The BEAM2 element is based on Euler-Bernoulli’s beam theory with
quadratic shape functions and continuous first derivatives. The deformations
account for are bending, shear, axial and St. Venant torsion. The element is
straight with uniform cross section and material properties. The cross section
does not need to be symmetrical. The 2 nodal points of the element, one at
each end, may be offset in relation to the principle axis.

Figure A.9 shows an arbitrary beam element referred to in a link
coordinate system (X,Y, Z) and a local system (x, y, z). The local x-axis
coincides with the beam axis through the center of gravity of the cross
sections, and is positive in the direction from point I to J . The local y- and
z-axes coincide with the principal axes of the cross section. An auxiliary point
K defines together with the beam axis the local xz-plane. The local z-axis is
positive in the direction from the element toward point K. The end points I
and J are connected, via fictitious rigid eccentricities, to the nodal points II
and JJ , respectively, at which nodal parameters are defined.

The BEAM2 element may optionally be equipped with pin flags in end I
and/or J . They are used to remove connections between the associated grid
point and selected DOFs of the beam defined in the local element coordinate
system. Thus, they work like inserting a local hinge in the beam for the

Fedem 8.0 Theory Guide Finite Element Library A-7

-

6

�
�
��	

xlink

ylink

zlink

e
1 e

2

e 3
e4

e5 e
6

e7
e8

- v
6

w

��	u

Figure A.7: HEX8, Isoparametric hexahedron element

-

6

�
�
��	

xlink

ylink

zlink

e
1 e

3

e 5
e7

e13 e
15

e17
e19

e
2

e
4

e6e8
e9 e10

e
11

e12e14

e
16

e18

e20

- v
6

w

��	u

Figure A.8: HEX20, Isoparametric hexahedron element

A-8 Finite Element Library Fedem 8.0 Theory Guide

A

-

6

�
�

��	
xlink

ylink

zlink

s
I
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
� sJ����

�3 xelem

C
C
C
C
C
CO

yelem

��
���

���
���

�: zelem

sK
�

�
�

cIIex

ey

ez

��

cJJ
fictitious rigid arm

Figure A.9: BEAM2, Beam element

selected DOFs. The beam must have stiffness associated with the DOFs that
are released in this manner, e.g. if local DOF 4 is released in one end, the
beam must have a nonzero torsional stiffness.

A.9.1 Spot weld element

The BEAM2 element described above is also used to represent spot welds1 in
Fedem. A circular massive cross section is assumed for a spot weld beam. An
explicit local z-axis definition is therefore not needed for such elements.

Instead of the rigid arms, a spot weld BEAM2 element is equipped with a
WAVGM element in each end (see Section A.15 below), in order to distribute
the forces transferred by the beam over a group of nodes in the welded
surfaces. The end points of the beam, which are connected to the reference
node of the WAVGM elements, are then defined by the projection of a
specified point onto each of the 2 welded surfaces. The WAVGM elements may
span an arbitrary number of nodes, but typically they are connected to all
surface nodes of the finite element that is intersected by the spot weld beam.

1Known as CWELD elements in Nastran.

Fedem 8.0 Theory Guide Finite Element Library A-9

Since the welded surfaces typically are quite close, the actual length of the
spot weld beam will be relatively small (or maybe zero). However, it is
possible to equip the spot weld beam with a separate effective length property
to be used instead of its actual length when calculating the element stiffness.

A.10 BUSH

BUSH is a 2-node generalized spring element of zero length. The two element
nodes may, or may not be coincident. The spring element is positioned
independently of the two element nodes, and is connected to these nodes via
rigid arms, as shown in Figure A.10. Nominal stiffness values for the 3
translational and 3 rotational DOFs are given in a local element coordinate
system. This local system is either specified explicitly as an element property,
or defined implicitly through the two nodes and a given auxiliary point. The
implicit definition is similar to that of the local coordinate system for a beam
element (see Section A.9). Thus, this definition is not applicable if the two
element nodes are coincident. The BUSH element does not contribute to the
mass matrix.

-

6

�
�

��	
xlink

ylink

zlink

eI

eJ

u
�
�
�

ex

ey

ez

fictitious rigid arm�
��

�
��*

xelem

A
AAK

yelem

PPPq zelem

Figure A.10: BUSH, Generalized spring element

A-10 Finite Element Library Fedem 8.0 Theory Guide

A

The BUSH element may also be specified without any stiffness properties,
but only the element topology. Such elements are automatically created
during modeling in Fedem, for instance when a mechanism joint is attached to
a link at a slave node of an RGD, RBAR or WAVGM element (see the
Fedem 8.0 User Guide, Section 3.6, “Attaching and detaching elements”). A
property-less BUSH element is the created as the connection between this
slave node and an added added external node (triad) at the same location.

The nominal stiffness values for the property-less BUSH element are
computed automatically based on the overall stiffness properties of the link2.
For the translational and rotational stiffnesses, kt and kr, respectively, the
following three alternative procedures are available:

kt =
0.1

εsing
min {diag(Ktra)} , kr =

0.1

εsing
min {diag(Krot)} (A.1)

kt = Cs
tr(Ktra)

ntra
, kr = Cs

tr(Krot)

nrot
(A.2)

kt = Cs max {diag(Ktra)} , kr = Cs max {diag(Krot)} (A.3)

Here, Ktra and Krot are the translational and rotational parts, respectively, of
the fully assembled link stiffness matrix, and ntra and nrot denote the total
number of translational and rotational DOFs, respectively. Moreover, diag(·)
denotes the diagonal elements of a given matrix, whereas tr(·) is the trace
operator (sum of diagonal elements). Finally, εsing denotes the singularity
criterion used by the Fedem Link Reducer when factoring the link stiffness
matrix (specified by the user through the Link property panel, see the
Fedem 8.0 User Guide, Section 4.1.5,“Link properties”), and Cs is a
user-defined scaling factor that may be specified through the command-line
option -autoStiffScale when running the Link Reducer (default is 102).

The wanted procedure is selected through the command-line option
-autoStiffMethod. The default is to use equation (A.3).

A.11 SPRING and RSPRING

SPRING is a 2-node linear spring element which adds a 6×6 symmetric
stiffness matrix to the translatory DOFs of the 2 nodes. The element stiffness
matrix is referred to in the global (or link) coordinate system. The element
may be of zero length, i.e. the 2 nodes can have identical coordinates.

2Unless the link is completely rigid, e.g., it consists of a single RGD element. In that case
kt = kr = 2.0 · 1011 is used instead.

Fedem 8.0 Theory Guide Finite Element Library A-11

RSPRING is similar to SPRING, but for the rotational DOFs. The SPRING
element may be connected to both 3-DOF and 6-DOF nodes3, whereas the
RSPRING element may be connected to 6-DOF nodes only. The SPRING
and RSPRING elements do not contribute to the mass matrix.

A.12 CMASS

CMASS is a 1-node concentrated mass element which adds a 6×6 symmetric
mass matrix to a 3- or 6-DOF node. The element mass matrix is referred to in
the global (or link) coordinate system. Note that any non-zero inertia terms
are ignored for CMASS elements that are connected to 3-DOF nodes. The
CMASS element does not contribute to the stiffness matrix.

The CMASS element may also be specified without any mass properties,
but only the element topology. During modeling in Fedem, such elements are
automatically created at the extra node that is added when creating
property-less BUSH elements at slave nodes, see Section A.10. The CMASS
element is needed at such added nodes to avoid that the assembled mass
matrix becomes singular, with subsequent failure in the eigenvalue analysis.
For such property-less CMASS elements, a diagonal element matrix is
assumed with the following values for the translational and rotational DOFs,
respectively:

mt = Cm max {diag(Mtra)} (A.4)

mr = Cm max {diag(Mrot)} (A.5)

Here, Mtra and Mrot are the translational and rotational parts, respectively,
of the fully assembled mass matrix, and Cm is a user-defined scaling factor
that is specified through the command-line argument -autoMassScale when
running the Fedem Link Reducer (default value is 10−9).

In some cases, it may happen that the value mr defined by equation (A.5),
is identically zero. For instance, if the finite element model consists of solid
elements only, in addition to at least one WAVGM element with automatically
added BUSH and CMASS elements at its slave node, there are no mass
contributions to the rotational DOFs in the model. In such cases, a value for
mr is instead derived from the global inertia tensor, I, that may be computed

33-DOF nodes are internal nodes that are used by solid finite elements only and thus lack
rotational DOFs. 6-DOF nodes have 3 translatory- and 3 rotational DOFs, and are connected
to at least one shell, beam or RBAR element, or is a master node in a RGD element

A-12 Finite Element Library Fedem 8.0 Theory Guide

A

from the finite element model, i.e.

I :=

 Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 =

∫
Ω

ρ

 y2 + z2 xy xz
x2 + z2 yz

symm. x2 + y2

 dV (A.6)

where ρ is the mass density, and

mr =
Cm
3

(Ixx + Iyy + Izz) (A.7)

A.13 RBAR

RBAR is a rigid bar element with 2 nodal points and 6 DOFs assigned to each
node. The nodal points located at each end of the bar are numbered 1 and 2
as shown in Figure A.11. The nodal DOFs are referred to in the link
coordinate system. The element has no material properties. The 12 DOFs of
the element are related to each other through the following set of equations:

u2 = u1 + ezθy1 − eyθz1 (A.8)

v2 = v1 + exθz1 − ezθx1 (A.9)

w2 = w1 + eyθx1 − exθy1 (A.10)

θx2 = θx1 (A.11)

θy2 = θy1 (A.12)

θz2 = θz1 (A.13)

where ex, ey, ez are the relative distance between the two nodes in the
respective coordinate directions, as depicted in Figure A.11

The physical properties of the RBAR element are two sets of component
numbers at each node, identifying the dependent and independent DOFs at
the node. The total number of independent DOFs in the element must be
equal to 6 and they must jointly be capable of representing any general rigid
body motion of the element. The element may have up to 6 dependent DOFs.
If no dependent DOFs are specified, all DOFs that are not specified as
independent will be made dependent.

Since the RBAR element may have dependent DOFs at both nodes, none
of the nodes can be a triad (external node) in Fedem. If all independent
DOFs are gathered at one node (and all the dependent DOFs are at the other
node), the RBAR element is equivalent to a 2-node RGD element, see
Section A.14. During an analysis, rigid bar elements are processed using a

Fedem 8.0 Theory Guide Finite Element Library A-13

-

6

�
�

��	
xlink

ylink

zlink

u1

u2

�
�
�

ex ey

ez

��	
u, θx

- v, θy

6

w, θz

Figure A.11: RBAR, Rigid bar element

DOF elimination method. The constraint equations (A.8)–(A.13) are
generated for each element and are used to eliminate the dependent DOFs
from the global system of equations, before that system is assembled.

A.14 RGD

RGD is a rigid element with one master node having 6 independent DOFs,
3 translations and 3 rotations. All remaining nodes are slave nodes having
either 3 or 6 dependent DOFs. Only the master node can be a triad (external
node) in Fedem. The nodal points are numbered 1 through number of nodes as
shown in Figure A.12. A RGD element has no material properties. The set of
dependent DOFs at the slave nodes may optionally be specified as a physical
property. The default behavior if no dependent DOFs are specified is that all
DOFs at the slave nodes are made dependent on the master node DOFs.

The presence of a rigid element in a model implies that the motion of all
the slave nodes on the element are to be constrained as though they were
connected to the master node by mass less rigid beams (or semi-rigid if not all
slave node DOFs are made dependent). During an analysis, rigid elements are
processed using a DOF elimination method. A set of constraint equations,
equivalent to Equations (A.8)–(A.13) is generated for each slave node, relating

A-14 Finite Element Library Fedem 8.0 Theory Guide

A

-

6

�
�

��	
xlink

ylink

zlink

e
1m u2s

u
3s

u4s

u5s
��	u

- v
6

w

Figure A.12: RGD, Multi-node rigid element

the dependent DOFs to the independent DOFs of the master node. These
equations are then used to eliminate all dependent DOFs from the global
system of equations, prior to the system matrix assembly. Note that a master
node in one RGD element may be a slave node in another RGD. Such chains
of RGD elements are resolved explicitly in such a way that all slave DOFs
ultimately are coupled only to independent DOFs that do not depend on
other RGD constraints.

A.15 WAVGM

WAVGM is an interpolation constraint element4, which defines the motion at
a reference (slave) node as the weighted average of the motions at a set of
other (master) nodes. The element topology is similar to that of the
RGD-element, see Figure A.13, except that for WAVGM node 1 is a slave
node containing the dependent DOFs, whereas all other nodes are masters
with independent DOFs.

Unlike the RBAR and RGD elements described in the previous sections,
the WAVGM element does not add stiffness to the link, unless the slave node
already is connected to some of the master nodes via other finite elements.

4This element is known as RBE3 in Nastran.

Fedem 8.0 Theory Guide Finite Element Library A-15

-

6

�
�

��	
xlink

ylink

zlink

u1s

e2m

e
3m

e4m

e5m

��	
u, θx

- v, θy

6

w, θz

Figure A.13: WAVGM, Multi-node weighted averaged motion element

Thus, the WAVGM element works like a force distributor; forces that are
applied at the reference (slave) node are distributed over the master nodes
depending on the given weighting factors and the relative distance to the
reference node.

The manner in which the forces are distributed is analogous to the classical
bolt pattern analysis. Consider a given force F and a momentM applied at
the reference node of the WAVGM element. They are first replaced by an

equivalent force F̃ = F and moment M̃ = M + F × e at the weighted center
of gravity of the master nodes, where e is the offset vector between the
reference node and the weighted center of gravity. The force F̃ is then
distributed to the master nodes proportional to the given weighting factors,

whereas the moment M̃ is distributed as forces proportional to their distance
from the weighted center of gravity times their weighting factors.

Alternatively, the moment M̃ may be distributed directly as moments at the
master nodes (provided they are 6-DOF nodes) proportional to their

weighting factors, in the same manner as the force F̃ . This can be used if all
master nodes of the element are co-linear, such that they cannot absorb a
moment though a set of forces.

The weighting factors can in principle be different for the various force

A-16 Finite Element Library Fedem 8.0 Theory Guide

A

component at a given master node. Thus, the force distribution is carried out
on a component-by-component basis. The resulting expression for the i’th
force component at master node number a is then

fai =
Fi ω

a
i∑

b ω
b
i

+
(Mj − Fkei + Fiek)ωai r

a
ik∑

b

(
rbik

2
+ rbii

2
)
ωbi

−
(Mk − Fiej + Fjei)ω

a
i r
a
ij∑

b

(
rbii

2
+ rbij

2
)
ωbi

(A.14)
where (i, j, k) forms a cyclic permutation of the components x, y, z, and raij
denotes the j’th component of the relative position vector rai from the
weighted center of gravity to the a’th master node, based on the weighting
factors ωai :

rai = xa −
∑
b ω

b
ix

b∑
b ω

b
i

(A.15)

Alternatively, when the master nodes are co-linear such that the moment has
to be distributed directly, the force components at master node a are given by
only the first term of Equation (A.14), whereas the moment components are

ma
i =

(Mi − Fjek + Fkej)ω
a
3+i∑

b ω
b
3+i

(A.16)

The above expressions are now used to establish the governing constraint
equations for the WAVGM element, which are used to eliminate the slave
node DOFs in the global system of equations of the link FE model. Let Rm

and Rs denote vectors that collect force components at all master DOFs and
slave DOFs, respectively, in the element. Similarly, let rm and rs denote the
associated displacement vectors. The master and slave components are then
related through

rs = Tc rm (A.17)

Rm = TT
c Rs (A.18)

The row of TT
c (column of Tc) corresponding to a given slave DOF is then

obtained by in inserting a unit value for Fx, Fy, Fz, Mx,My,Mz, respectively,
in turn while letting the other components be zero.

It is clear that for some WAVGM element geometries the denominators of
Equation (A.14) might be small, or even zero. For instance, for a three-noded
element where all nodes lie on a line that is parallel to the global x-axis, the
denominator of the first term is zero when i = 3. The size of the denominator
is therefore checked against a threshold value, and the resulting constraint
coefficient is omitted if the denominator is smaller than this threshold. These

Fedem 8.0 Theory Guide Finite Element Library A-17

checks are performed as follows for the two terms:

∑
b

(
rbik

2
+ rbii

2
)
ωbi >

(
max
b
‖rbik‖ εtol

)2

+

(
max
b
‖rbii‖ εtol

)2

(A.19)

∑
b

(
rbii

2
+ rbij

2
)
ωbi >

(
max
b
‖rbii‖ εtol

)2

+

(
max
b
‖rbij‖ εtol

)2

(A.20)

where εtol is a relative tolerance parameter that may be set by the user
through the command-line option -tolWAVGM of the Fedem Link Reducer
(default value = 10−4). Thus, constraint coefficients are added only for those
terms satisfying the above conditions.

It should be emphasized that the constraints given by Equation (A.17) are
enforced in strong form in Fedem (the same is true for the RGD and RBAR
elements as well). This implies that a WAVGM slave node can not be a triad
(external node) in Fedem. Moreover, WAVGM elements where the slave node
already is connected to the master nodes trough other finite elements should
be used with caution. Such element may result in an over-constrained system
of equations, such that the resulting reduced link does not possess the
necessary 6 rigid body modes. This may in turn make the dynamics
simulation unstable.

A.16 Generic part element

A generic part consists of a rigid spider attached to a Center of Gravity (CG)
node. Each spider leg spans the distance from the CG node to one of the
other element nodes. At the end of each leg there is a linear spring (equivalent
to the BUSH element described in Section A.10) with some stiffness kt against
translation in all directions, and stiffness kr against rotation in all three
directions. For two co-located nodes (i and j) the overall stiffness of one such
spring element is then given by

fi
mi

fj
mj

 =


ktI 0 −ktI 0

0 krI 0 −krI
−ktI 0 ktI 0

0 −krI 0 krI




vi
θi
vj
θj

 (A.21)

With node j being rigidly attached to the CG node, one can establish the

A-18 Finite Element Library Fedem 8.0 Theory Guide

A

virtual displacement relation

[
vj
θj

]
=

[
1 −ê
0 1

] [
vCG

θCG

]
where e =

 xj − xCG

yj − yCG

zj − zCG

 (A.22)

Using the kinematic relationship above in a virtual work expression, one
can establish the stiffness matrix for the spider leg between element node i
and the CG node as

fi
mi

fCG

mCG

 =


kt 0 −kt ktê
0 kr 0 −kr
−kt 0 kt −ktê
êTkt −kr −êTkt (kr + êTkT ê)




vi
θi
vCG

θCG

 (A.23)

where kt = ktI and kr = krI.

The full stiffness matrix for the generic part is then formed by assembling
the nodal contributions from all such spider legs. Rewriting equation (A.23)
with the more compact notation[

f i1
f i2

]
=

[
ki11 ki12

ki21 ki22

] [
vi1
vi2

]
(A.24)

the assembly of equation (A.23) for all nodes from 1 to n (with n being the
CG node) gives the following generic part stiffness matrix

f1
1
...

fn−1
1

n−1∑
j=1

f j2

 =


k1

11 . . . 0 k1
12

...
. . .

...
0 kn−1

11 kn−1
12

k1
21 . . . kn−1

21

n−1∑
j=1

kj22




v1

1
...
vn−1

1

vn2

 (A.25)

The mass properties of the generic part element are assumed concentrated
at the CG node, both with respect to translation and rotation. This gives the
mass matrix defined in the relationship

f1
1
...
fn−1
1

fn2

 =


0 . . . 0 0
...

. . .
...

0 0 0
0 . . . 0 mn

22




v̈1
1

...
v̈n−1

1

v̈n2

 (A.26)

Fedem 8.0 Theory Guide Finite Element Library A-19

where

mn
22 =


m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx Ixy Ixz
0 0 0 Ixy Iyy Iyz
0 0 0 Ixz Iyz Izz

 (A.27)

When using the generic part element with the element matrices defined by
equations (A.25) and (A.26) in a dynamics simulation, one might get artificial
oscillations in the CG node DOFs, depending on the actual magnitude of the
characteristic mass and stiffness being used. This problem might be avoided
by eliminating the CG node DOFs through static condensation of
equations (A.25) and (A.26), before the time integration is started. This is
similar to what is being done for the internal DOFs of the finite element parts
in the model reduction process, see Sections 3.2.1 and 3.2.3.

Assuming that all f j2 in equation (A.25) are always zero (since no
distributed loads are associated with a generic part), the last line of
equation (A.25) yields

vn2 = B

 v1
1

...
vn−1

1

 where B =

n−1∑
j=1

kj22

−1 [
k1

21 . . . kn−1
21

]
(A.28)

Combining equation (A.28) and its associated second-derivative with the first
n− 1 lines of equations (A.25) and (A.26), respectively, while pre-multiplying
with BT produces the following element matrices for the generic part

k =
[

k1
21 . . . kn−1

21

]T
B +

 k1
11 . . . 0
...

. . .
...

0 . . . kn−1
11

 (A.29)

m = BT imn
22B (A.30)

The stiffness coefficients kt and kr that is used in equation (A.21) may be
specified by the user for each part (see the Fedem 8.0 User Guide,
Section 4.1.5 “Link properties”). However, it is also possible to let the
coefficients be automatically computed, in such a way that the generic part
behaves like an “almost” rigid element.

The automatic “rigid” stiffness is computed from the mass properties of

A-20 Finite Element Library Fedem 8.0 Theory Guide

A

the part and a given target eigenfrequency:

kt = (2πfrig)
2
m (A.31)

kr = (2πfrig)
2 1

3

∑
i,j=x,y,z

Iij (A.32)

where m and Iij are components of the mass matrix (A.27), and frig is the
desired target eigenfrequency of the part (in [Hz]). This target value may be
set by the user through the command-line option -targetFrequencyRigid for
the Dynamics Solver. The default value is 10000 Hz.

Fedem 8.0 Theory Guide Finite Element Library A-21

A-22 Finite Element Library Fedem 8.0 Theory Guide

A

Bibliography

[1] Allman, D. J., “A Simple Cubic Displacement Element for Plate
Bending”, Int. Jour. for Num. Meth. in Engrg., Vol. 10, pp. 263–281,
1976. A.1

[2] Sivertsen, O. I., “Large Displacement Finite Element Formulations of
Elastic Mechanism Dynamics”, Dr. Ing. Thesis, Norwegian Institute of
Technology, 1981.

[3] Bergan, P. G., Larsen, P. K. and Mollestad, E., “Svingning av
konstruksjoner”, Tapir forlag, 1981.

[4] Bergan, P. G. and Felippa, C. A., “A Triangular Membrane Element with
Rotational Degrees of Freedom”, Comput. Methods Appl. Mech. Engrg.,
Vol. 50, pp. 25–69, 1985. A.1

[5] Rankin, C. C. and Nour-Omid, B., “The Use of Projectors to Improve
Finite Element performance”, Computers and Structures, Vol. 30, pp.
257–267, 1988. A.2

[6] Enright, W. H. et. al, “Interpolants for Runge–Kutta Formulas”, ACM
Trans. on Math. Softw., Vol. 12, No. 3, pp. 193–218, 1986. 8.4

[7] Gear, C. W. and O. Østerby, “Solving Ordinary Differential Equations
with Discontinuities”, ACM Trans. on Math. Softw., Vol. 10, No. 1, pp.
23–44, 1984. 8.4

[8] Hilber, H. M., Hughes T. J. R. and Taylor R. L., “Improved Numerical
Dissipation for Time Integration Algorithms in Structural Dynamics”,
Earthquake Engineering and Structural Dynamics, Vol. 5, pp. 283–292,
1977. 7.4.1

Fedem 8.0 Theory Guide BIBLIOGRAPHY A-23

[9] Iversen, T., “Parallel, Modular Integration for Dynamic Simulation of
Industrial Processes”, SINTEF report STF48 F86015; (in Norwegian),
1986. 8.2

[10] Iversen, T., “Multidisciplinary Simulation. Method, Software Structure
and Documentation for the Control Part”, SINTEF work note 88–63–K;
(in Norwegian), 1988.

[11] Newmark, N. M., “A Method of Computation for Structural Dynamics”,
J. Eng. Mech. Div. ACSE, Vol. 85, EM3, 1959. 8.1

[12] Haugen, B., “Buckling and Stability Problems for Thin-Shell Structures
using High-Performance Finite Elements”, Ph. D. Dissertation,
University of Colorado, 1994. A.2

[13] Geradin, M. and Rixen, D., “Mechanical Vibrations, Theory and
Applications to Structural Dynamics”, Wiley & Sons Ltd., 1997. 7.4.2

[14] Hulbert, G. M., Chung J. J., “A Time Integration Algorithm for
Structural Dynamics with Improved Numerical Dissipation: The
Generalized-α Method”, J. Appl. Mech., Vol. 60, pp. 371–375, 1993.
(document), 7.4.3, 7.4.3, 7.3

[15] Brincker, R. and Ventura, C., “Introduction to Operational Modal
Analysis”, Wiley, 2015. 7.9

A-24 BIBLIOGRAPHY Fedem 8.0 Theory Guide

	Introduction
	History
	System Simulation Methods
	Terminology and Definitions

	Fundamentals
	Notation
	Rigid-body motion
	Finite rotations
	Spin of a matrix
	Rotation of a vector
	Rodriguez parameterization
	Variation of Rodriguez parameterization
	Euler angles parameterization
	Euler angles extraction

	Model Reduction
	Review of model reduction methods
	Modal reduction
	Static condensing (Guyan reduction)
	Dynamic condensing
	Dynamic substructuring
	Summary

	Component mode synthesis reduction
	Static modes
	Constrained dynamic modes
	Reduced system

	Co-rotated Formulation
	Local element coordinate system
	Method 1: Best fit of max sized triangle
	Method 2: Mass based weighted average

	Flexible Connections
	Spring elements
	Failure and yield properties
	Interconnected spring elements
	Global spring elements

	Damper elements
	Spring-constrained joints

	Modeling of Joints
	Master and Slave based Joint Modeling
	Single-master Joints
	Revolute Joint
	Universal Joint
	Constant Velocity Joint
	Ball Joint
	Rigid Joint
	Free Joint
	Axial Joint

	Multi-master Joints
	Prismatic Joint
	Cylindric Joint
	Cam Joint
	Spring-based cam joint formulation

	Master and Slave based Transmissions
	Gear Joint
	Rack and Pinion
	Screw Joint

	Joint Friction
	Viscous friction
	Coulomb friction
	Modified Stribeck friction
	Total friction
	Equivalent load in revolute joint
	Equivalent load in ball and free joints
	Equivalent load in prismatic joint
	Equivalent load in cam joint

	Dynamics Simulation
	Dynamics equation on incremental form
	Newmark time integration
	Stability and accuracy

	Newton–Raphson iteration
	Convergence criteria

	Newmark integration with numerical damping
	The Hilber–Hughes–Taylor method
	Numerical characteristics of the HHT- method
	The generalized- method

	Structural damping
	Evaluation of the Newton matrix
	Evaluation of the force vector
	External forces
	Stiffness forces
	Inertia and damping forces
	Forces due to prescribed motion

	Quasi-static equilibrium
	Equilibrium iteration procedure

	Frequency Response Analysis
	Direct frequency response analysis
	Modal frequency response analysis
	Modal vs. direct frequency response
	Sampling and windowing
	Fast fourier transformation (FFT)
	Modal damping

	Control System
	Problem statement
	Control variables
	Control system tasks
	Initialization
	Steady state
	Time integration

	Control element library
	Basic Elements
	Time dependent elements
	Piecewise Continuous Elements
	Compensator Elements
	General Transfer Functions

	Simulation Results
	Fatigue analysis
	Peak valley extraction
	Rainflow analysis
	Damage and life calculation

	Energy calculations
	Strain energy
	Kinetic energy
	Potential energy
	Input energy
	Energy loss
	External energy
	Energy check-sum

	Finite Element Library
	FFT3
	FFQ4
	TET4
	TET10
	WEDG6
	WEDG15
	HEX8
	HEX20
	BEAM2
	Spot weld element

	BUSH
	SPRING and RSPRING
	CMASS
	RBAR
	RGD
	WAVGM
	Generic part element

